BENCH SCALE TREATABILITY STUDY

PREPARED FOR:

Chevron Perth Amboy Refinery Perth Amboy, NJ

PREPARED BY:

Friendswood Drive, Suite 101 Friendswood, Texas 77546 (281) 996 -9892

REVISION O

May 19, 2007

TABLE OF CONTENTS

1.0 Introduction	
1.1 Purpose of Treatability Study	1
2.1 Sample Collection and Preparation	1
2.2 Initial Chemical Testing Results	3
2.3 Bench Treatment Plan	3
2.3 SAMPLE MIXING	3
2.5 Treatment Results	6
3.0 Conclusions	6

LIST OF TABLES

TABLE 1: SUMMARY OF SOIL SAMPLE LOCATIONS

TABLE 2: AS RECIEVED MOISTURE AND BULK DENSITY

TABLE 3: INITIAL SAMPLE RESULTS

TABLE 4: LEAD REDUCTION REAGENT TRIALS

TABLE 5: TREATED MATERIAL

LIST OF FIGURES

FIGURE 1: MATERIAL HOMOGINIZATION

FIGURE 2: MIXING PROCESS

FIGURE 3: SAMPLE CONTAINERS

LIST OF APPENDICES

APPENDIX A: INITIAL CHEMICAL TEST RESULTS

APPENDIX B: LABORATORY BENCH DATA

APPENDIX C: INDEPENDENT ANALITICAL LABORATORY REPORTS

1.0 Introduction

1.1 Purpose of Treatability Study

The purpose of the treatability study is to select the appropriate stabilization method and operational approach to meet the objectives of the scope of the remediation. The requirement for stabilization is driven by the need to treat, excavate, and dispose of the lead-impacted materials as non-hazardous soil. As such the primary goal of this study is to determine a reagent or reagent blend capable of producing lead leachability results of less than 5 mg/l TCLP.

Reagent candidates were selected based on past experience. Each reagent selected was independently tested to determine the most effective stabilization options for each.

2.0 Bench Scale Testing

2.1 Sample Collection and Preparation

On November 7, 2007 samples were collected from various locations at the Perth Amboy Refinery; sample S1016 was collected in the main yard between tanks 300, 301, 326, and 327, sample S2249 was collected in the main yard between concrete pad and surge pond, sample S2197 was collected in the main yard bulk station, and also sample S3287 was collected in the east yard. These samples were packaged onsite and shipped to the ENTACT Treatability Lab in Houston, Texas.

Table 1 – Summary of Soil Sample Locations

Chevron ID	Sample Location	Sample Location Coordinates		Chemical Concern Concentra		Depth (ft. bgs)	Rational for Bench Test Sample
		Easting	Northing	Benzene	Lead		Location
S1016	Main Yard – SWMU 18 (between tanks 300, 301, 326, and 327	557479.34	621696.19	26,000		3.5-4.0	Highest benzene concentration at the refinery
S2249	Main Yard – SWMU 43 (between concrete pad and surge pond)	557009.90	622479.01	82		8.5-9.0	Highest benzene concentration in SWMU43
S2387	East Yard – SWMU 8	560142.25	620623.36		176,000	11.5- 12.0	Highest lead concentration at the refinery
S2197	Main Yard – Bulk Station	558205.95	620705.07		20,500	3.5-4.0	Highest lead concentration in the Main Yard

The samples were homogenized to ensure full distribution and consistency within the sample material. A portion of the homogenized material was then placed in containers and sent to Accutest Laboratories for analysis. The untreated soil samples were analyzed for both Total and TCLP levels of lead. Two of the samples were also tested for benzene levels and the possible treatment through low temperature thermal desorption (LTTD).

URS sent additional soil sample cores to the ENTACT Treatability Lab in Houston, Texas. When the samples arrived they were removed from the core cylinders and placed in 5 gallon buckets, 1 bucket for each sample location. Samples were collected from the Main yard bulk station and given the sample ID S2197RB2, and also from the East yard and given the sample ID S2387RF4. URS also sent samples from these locations to Lancaster Laboratories to be analyzed.

Figure 1: Material Homogenization

The sediments from the additional samples were homogenized to ensure similar composition throughout and to redistribute the moisture full distribution and consistency within the sample material. A portion of the homogenized material was then placed in containers and sent to Accutest Laboratories for analysis. The untreated soil samples were analyzed for Total lead, TCLP, TEL, VOC's, and moisture content. Additional material was also extracted from each sample and evaluated for moisture content and bulk density.

Table 2 – As Recieved Moisture and Bulk Density

Material	Moisture/Water Content	Bulk Density (pcf)
S2197RB2	12.42% / 11.05%	99.08
S2387RF4	33.23% / 24.94%	113.99

Bulk density represents material loosely compacted, as would exist when stockpiled. Worksheets for Moisture and Bulk Density for these samples are provided in the Appendix A.

2.2 Initial Chemical Testing Results

The analysis of the raw material provided a starting point to begin treatability design and also furnished a baseline to compare the chemical effects resulting from various reagent admixtures at varying dosages and concentrations. The raw soil lead leachability concentrations (mg/l) were identified as areas of the highest interest in samples S2197RB2 and S2387RF4. The complete laboratory analyses for the raw soils from Perth Amboy are included in Appendix A. The results of the initial raw soil analyses for lead are summarized as follows:

Table 3 – Initial Sample Results

Results of Raw Sample Analysis								
Sample ID	mple ID Analyte Results (mg/l)							
S1016-Raw	Lead	0.98	SW846 1311					
S2249-Raw	Lead	< 0.50	SW846 1311					
S2387-Raw	Lead	3.1	SW846 1311					
S2197-RAS	Lead	1.6	SW846 1311					
S2197RB2	Lead	11.7	SW846 1311					
S2387RF4	Lead	1240	SW846 1311					

2.3 Bench Treatment Plan

In order to treat the levels of lead in the main yard and east yard materials several reagents were added to each sample in varying percentages based on wet unit weight. Three different reagents were used; Tri-Sodium Phosphate (TSP), Enviroblend 80/20 from Premier Chemicals, and Redoxite from Redox Solutions.

REAGENT	DRY ADDITION RATES (by Weight)
EnviroBlend 80/20	5% - 7.5% - 10%
Tri-Sodium Phosphate	5% - 10%
Redoxite	5% - 10%

2.3 SAMPLE MIXING

After the reagent candidates were selected, sample mixing was initiated. In order to ensure similar mixing results for each sample, a standardized mix regime was followed. This included the following steps.

Procedure for Dry-Addition Reagent Methods

This bench scale process is intended to model the mixing effects of dry reagent addition in the field with excavator-based mixing.

<u>Material Homogenization</u> – verify the material remains homogenized, has no layering, or separation of water. If necessary, re-mix the untreated sample to remove any inconsistency in the material.

<u>Sample Aliquot Preparation</u> – collect enough material to provide for analytical lab requirements. For a full-suite of lab analysis, one (1) 8 oz jar will need to be prepared.

<u>Sample Aliquot Weighing</u> – using appropriate tare for the container, determine the weight to the nearest gram of the raw material sample. The expected quantity to produce the appropriate samples will be 500g – 1200g, dependent on the material type.

<u>Reagent Weighing</u> – calculate require reagent on a weight-per-weight basis. Using appropriate container tare, measure the reagent necessary to produce the addition rate for the sample material.

<u>Dry Mixing</u> – in the mixing bowl, using a Kitchen-Aid blender to simulate mixing in the field. Continue to mix the material until the visual consistency suggests the mixture of the reagent is complete and consistent.

<u>Analytical Sample Preparation</u> – place roughly 200g of material into the 8 oz glass jars and seal for laboratory analysis. Label sample jar with sample number and mix information.

Figure 2: Mixing Process

The bench trials were prepared as follows:

Table 4 – Lead Reduction Reagent Trials

Sample Number	Sample Material	Reagent
S2387RF4-TSP5-41408	1128g	56.4g
S2387RF4-TSP10-41408	1048g	104.8g
S2387RF4-Enviroblend5-41408	456g	22.8g
S2387RF4-Enviroblend10-41408	470g	22.4g
S2197RB2-TSP5-41408	554g	27.7g
S2197RB2-TSP10-41408	664g	66.4g
S2197RB2-Enviroblend5-41408	506g	25.3g
S2197RB2-Enviroblend7.5-41408	408g	30.6g
S287RF4-Redox5-42308	574g	28.7g
S287RF4-Redox10-42308	456g	45.6g
S2197RB2-Redox5-42308	498g	24.9g
S2197RB2-Redox10-42308	492g	49.2g

Once the samples were adequately mixed, they were sent to Landcaster Laboratories and analyzed for Total Lead, TCLP, TEL Lead for a 10 day turnaround.

Lample 10 1200 All Parties All

Figure 3: Sample Containers

2.5 Treatment Results

The Perth Amboy material sample results are shown in **Table 5**. The Enviroblend and TSP products are both phosphate-based compounds for lead solubility reduction or fixation, whereas the Redoxite is an Iron Sulfide compound for lead solubility reduction.

Table 5 - Treated Material, TCLP Results (mg/l)

Sample	Enviro	blend (8	30/20)	TS	SP	Redoxite		
Campic	5%	7.5%	10%	5%	10%	5%	10%	
S2197RB2	ND	ND		ND	0.0141	49.5	257.	
S2387RF4	0.740		1.07	271	0.155	2,730	67,200	

3.0 Conclusions

Enviroblend (80/20) at 5% and 7.5% dosages, applied as a function of bulk unit weight, is capable of reducing the leachability of lead to below 5 mg/l. TSP is also successful at addition rates of 5% and 10% in achieving leachability results for lead below the targeted value of 5 mg/l. Redoxite was not successful at 5% or 10%.

Given these results, the recommended dosages of either TSP or Enviroblend (80/20) will be up to 5% by bulk unit weight. Perhaps lower dosages can be achieved, with additional testing required to confirm, based on the extremely low levels indicated by the 5% results.

APPENDIX A: INITIAL CHEMICAL TEST RESULTS

tr's all in the chimistra

12/27/07

Technical Report for

Entact Houston

Chevron, Perth Amboy

CVX 108

Accutest Job Number: J78054

Sampling Date: 12/03/07

Report to:

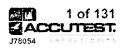
Entact Houston 699 South Friendswood Suite 100 Friendswood, TX 77546

ATTN: Mike Porter

Total number of pages in report: 131

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Client Service contact: Nadine Yakes 732-329-0200


Vincent J. Pugliese

President

Certifications: NJ(12129), NY(10983), CA, CT, DE, FL, IL, IN, KS, KY, LA, MA, MD, MI, MT, NC. PA, RI, SC, TN, VA, WV

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

Sections:

Table of Contents

~1~

Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary	4
Section 3: Sample Results	
3.1: J78054-1: S1016-RAW	
3.2: J78054-1A: S1016-RAW	
3.3: J78054-2: S2249-RAW	
3.4: J78054-2A: S2249-RAW	
3.5: J78054-3: S2387-RAW	10
3.6: J78054-3A: S2387-RAW	
3.7: J78054-4: S2197-RAS	12
3.8: J78054-4A: S2197-RAS	
Section 4: Misc. Forms	
4.1: Chain of Custody	
4.2: Sample Tracking Chronicle	
4.3: Internal Chain of Custody	18
Section 5: Metals Analysis - QC Data Summaries	22
5.1: Inst QC MA20199: Pb	
5.2: Inst QC MA20235: Pb	
5.3: Inst QC MA20282: Pb	
5.4: Inst QC MA20287: Pb	98
5.5: Prep QC MP41826: Pb	
5.6: Prep QC MP42010: Pb	
Section 6: General Chemistry - QC Data Summaries	
6 1. Percent Solids Raw Data Summary	121

Sample Summary

Entact Houston

Job No:

J78054

Chevron, Perth Amboy Project No: CVX 108

Sample Number	Collected Date Time By	Matrix Received Code Type	Client Sample ID
J78054-1	12/03/07 16:10 MP	12/04/07 SO Soil	S1016-RAW
J78054-1A	12/03/07 16:10 MP	12/04/07 SO Soil	S1016-RAW
J78054-2	12/03/07 16:15 MP	12/04/07 SO Soil	S2249-RAW
J78054-2A	12/03/07 16:15 MP	12/04/07 SO Soil	S2249-RAW
J78054-3	12/03/07 16:20 MP	12/04/07 SO Soil	S2387-RAW
J78054-3A	12/03/07 16:20 MP	12/04/07 SO Soil	S2387-RAW
J78054-4	12/03/07 16:25 MP	12/04/07 SO Soil	S2197-RAS
J78054-4A	12/03/07 16:25 MP	12/04/07 SO Soil	S2197-RAS

CASE NARRATIVE / CONFORMANCE SUMMARY

Cllent: Entact Houston Job No J78054

Site: Chevron, Perth Amboy Report Date 12/27/2007 10:45:08 A

On 12/04/2007, 4 Sample(s), 0 Trip Blank(s) and 0 Field Blank(s) were received at Accutest Laboratories at a temperature of 20.8 C. Samples were intact and properly preserved, unless noted below. An Accutest Job Number of J78054 was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Metals By Method SW846 6010B

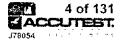
Matrix: LEACHATE Batch ID: MP41826

- All samples were digested within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) J77710-1MS, J77710-1MSD, J77710-1SDL were used as the QC samples for metals.

Matrix: SO Batch ID: MP42010

- All samples were digested within the recommended method holding time.
- * All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) J78673-8MSD, J78673-8SDL, J78673-8MS were used as the QC samples for metals.
- Matrix Spike Recovery(s) for Lead are outside control limits. Spike recovery indicates possible matrix interference and/or sample nonhomogeneity.
- Matrix Spike Duplicate Recovery(s) for Lead are outside control limits. Probable cause due to matrix interference and/or sample nonhomogeneity..
- J78054-4 for Lead: Elevated detection limit due to dilution required for high interfering element.

Wet Chemistry By Method EPA 160.3 M


Matrix: SO Batch ID: GN10153

The data for EPA 160.3 M meets quality control requirements.

Accutest certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting Accutest's Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

Accutest Laboratories is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by Accutest Laboratories indicated via signature on the report cover

Section 3

Report of .	Analysis		

Page 1 of 1

Client Sample ID: S1016-RAW

Lab Sample ID: Matrix:

J78054-1 SO - Soil

Date Sampled: 12/03/07

Date Received: 12/04/07 Percent Solids: 56.0

Project:

Chevron, Perth Amboy

Metals Analysis

Analyte RLResult Units DF Prep Analyzed By Method Prep Method Lead 573 3.4 mg/kg 1 12/21/07 12/22/07 RP SW846 6010B 1 SW846 3050B ²

(1) Instrument QC Batch: MA20282

(2) Prep QC Batch: MP42010

Page 1 of 1

Client Sample ID: S1016-RAW Lab Sample ID:

J78054-1A SO - Soil Matrix:

Date Sampled: 12/03/07 Date Received: 12/04/07

Percent Solids: 56.0


Project:

Chevron, Perth Amboy

Metals Analysis, TCLP Leachate SW846 1311

Analyte	Result	HW# MC	L RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Lead	0.98	D008 5.0	0.50	mg/l	1	12/11/07	12/13/07 ND	SW846 6010B ¹	SW846 3010A ²

(1) Instrument QC Batch: MA20235 (2) Prep QC Batch: MP41826

Page 1 of 1

υ. «

Client Sample ID: S2249-RAW

Lab Sample ID: Matrix:

J78054-2 SO - Soil

Date Sampled: 12/03/07 Date Received: 12/04/07

Percent Solids: 61.6

Project:

Chevron, Perth Amboy

Metals Analysis

Analyte Result RL Units DF Prep Analyzed By Method Prep Method

Lead 275 3.3 mg/kg 1 12/21/07 12/22/07 RP SW846 6010B 1 SW846 3050B 2

(1) Instrument QC Batch: MA20282(2) Prep QC Batch: MP42010

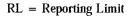
Page 1 of 1

اد) جا

Client Sample ID: S2249-RAW

Lab Sample ID: J78054-2A Matrix: SO - Soil Date Sampled: 12/03/07 Date Received: 12/04/07

Percent Solids: 61.6


Project:

Chevron, Perth Amboy

Metals Analysis, TCLP Leachate SW846 1311

Analyte	Result	HW#	MCL	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Lead	< 0.50	D008	5.0	0.50	mg/l	1	12/11/07	12/13/07 ND	SW846 6010B ¹	SW846 3010A ²

(1) Instrument QC Batch: MA20235(2) Prep QC Batch: MP41826

Page 1 of 1

3.5

Client Sample ID: S2387-RAW

Lab Sample ID: J' Matrix: S

J78054-3 SO - Soil Date Sampled: 12/03/07 Date Received: 12/04/07

Percent Solids: 71.6

Project:

Chevron, Perth Amboy

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Lead	267	2.8	mg/kg	1	12/21/07	12/22/07 RP	SW846 6010B ¹	SW846 3050B ²

(1) Instrument QC Batch: MA20282(2) Prep QC Batch: MP42010

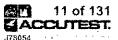
Page 1 of 1

Client Sample ID: S2387-RAW

Lab Sample ID: J78054-3A Matrix: SO - Soil Date Sampled: 12/03/07 Date Received: 12/04/07

Percent Solids: 71.6

Project:


Chevron, Perth Amboy

Metals Analysis, TCLP Leachate SW846 1311

Analyte Result HW# MCL RL Units DF Prep Analyzed By Method Prep Method Lead 3.1 D008 5.0 12/11/07 12/13/07 ND SW846 6010B 1 SW846 3010A 2 0.50mg/l

(1) Instrument QC Batch: MA20235(2) Prep QC Batch: MP41826

Page 1 of 1

Client Sample ID: S2197-RAS

Lab Sample ID: Matrix:

J78054-4 SO - Soil Date Sampled: 12/03/07 Date Received: 12/04/07

Percent Solids: 92.6

Project:

Chevron, Perth Amboy

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Lead a	868	6.5	mg/kg	3	12/21/07	12/24/07 WP	SW846 6010B [†]	SW846 3050B ²

(1) Instrument QC Batch: MA20287 (2) Prep QC Batch: MP42010

(a) Elevated detection limit due to dilution required for high Interfering element.

Page 1 of 1

Client Sample ID: S2197-RAS

Lab Sample ID: J78054-4A Matrix: SO - Soil

Date Sampled: 12/03/07 Date Received: 12/04/07

Percent Solids: 92.6

Project: Chevron, Perth Amboy

Metals Analysis, TCLP Leachate SW846 1311

Analyte Result HW# MCL RL Units DF Prep Analyzed By Method Prep Method Lead 1.6 D008 5.0 12/11/07 12/13/07 ND SW846 6010B 1 SW846 3010A 2 0.50mg/l

(1) Instrument QC Batch: MA20235 (2) Prep QC Batch: MP41826

Misc. Forms							
	-						
Custody Documents and Other Forms							

Includes the following where applicable:

- Chain of Custody Sample Tracking Chronicle Internal Chain of Custody

	-
_	
1	
ì	~
1	

Th

● ENT	CACT	C	HAIN	OF C	USTO	DY RI	EC	:01	RD	J٦	805	-		NO	-W-
a	OMPANY INFORMATION		-	PROJECT	NEORMATION.		Ţ		REOL	ESTED	ANALYS:	SMETH	XD_	-	
LOCATION ENT.	ACT HOUSTON		PROJECT	PROJECT CVX 108]. `								
ATTN Mike	Porter		.2	BILLINGT	NFORMATION:	- 7	1								
ADDRESS 699	S. Friendswood, Suite	100	BILL TO	ENTAC	T Services, I	LLC]_								
Frien	idswood, TX 77546		ADDRESS	699 S	riendswood	Drive	CONTAINERS								
				riendswo	od TX 77546]§								
	6-9892		PHONE	281-996-	9892										
FAX 281-99	6-9888			281- 9 96-986	38 PO#		MUMBER OF	Æ	TCLP Pb						
SAMPLE NO	SAMPLE DESCRIPTION	SAMPLE DATE	SAMPLE TIME	SAMPLE MATRIX	CONTAINER	PRIESERV.	₹	70 M Ps	TOT.					COMMENTS	
\$1016-Raw -1	Soil contaminated with petroleum product	12/03/07	7 16:10	Solf	Plastic Bag	None	1	Х	х				(153)	
62249-Raw -2_	Soil contaminated with petroleum product	12/03/07	7 16:15	Soil	Plastic Bag	None	1	Х	х						
\$2367-Aaw -3	Soil contaminated with petroleum product	12/03/07	16:20	Soil	Plastic Bag	None	1	Х	х						
\$2197-Ras - U	Soil contaminated with petroleum product	12/03/07	7 16:25	Soil	Plastic Bag	None	1	X	х						
										_					
			+				-								
											1_				
SAMPLER	M. Porter		SHIPMENT	FEDE						VABILL				20	ç .
REQUIRED TURNA		······			☐ 72 HOURS		S				HOUTIN				
1. RELINQUISHED		DATE	2. RELINQU SENTORE	AISHED BY	ملا	<u> </u>		DAT	_		RELING	USHED	RA		DATE
PARTER PORTER / ENTACT 16:45		PRINTED HAME/CO	MPAHY SH	7 F. L.			12/4/ 11/4/	100	FFR	NTED HAME	CHEPARY				
1. RECEIVED BY	· / F/51/151	DATE	2. RECEIVE	D BY	. , Ł			DATI		3.	RECEIV	ED BY			DATE
SXMATURE:		12/3/07	SENTURE P	Del T				12/4	1/47	SIG	NATURE		***************************************		
PRINTED HUMB COMPANY.	<u> </u>	16.45	FENTE PROPERTY		0,			10.		FA	NTED NAMES	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX			

J78054: Chain of Custody Page 1 of 1

Internal Sample Tracking Chronicle

Entact Houston

Job No:

J78054

Chevron, Perth Amboy Project No: CVX 108

Sample Number	Method	Analyzed	Ву	Prepped	Ву	Test Codes
J78054-1 S1016-RAY	Collected: 03-DEC-07	16:10 By: MP	Recei	ved: 04-DEC	-07 By	
J78054-1 J78054-1	EPA 160.3 M SW846 6010B	07-DEC-07 22-DEC-07 05:37	TS RP	21-DEC-07	JF	%SOL PB
J78054-2 S2249-RAV	Collected: 03-DEC-07	16:15 By: MP	Recei	ved: 04-DEC	-07 By	
J78054-2 J78054-2	EPA 160.3 M SW846 6010B	07-DEC-07 22-DEC-07 05:58	TS RP	21-DEC-07	JF	%SOL PB
J78054-3 S2387-RAV	Collected: 03-DEC-07	16:20 By: MP	Recei	ved: 04-DEC	-07 By	:
J78054-3 J78054-3	EPA 160.3 M SW846 6010B	07-DEC-07 22-DEC-07 06:05	TS RP	21-DEC-07	JF	%SOL PB
J78054-4 S2197-RAS	Collected: 03-DEC-07	16:25 By: MP	Recei	ved: 04-DEC	-07 By	s e e e e e e e e e e e e e e e e e e e
J78054-4 J78054-4	EPA 160.3 M SW846 6010B	07-DEC-07 24-DEC-07 15:21	TS WP	21-DEC-07	JF	%SOL PB
	Collected: 03-DEC-07		Recei	ved: 04-DEC	-07 By	
J78054-1A	SW846 6010B	13-DEC-07 00:29	ND	11-DEC-07	TG	EPB
J78054-2A S2249-RAV	Collected: 03-DEC-07 N	16:15 By: MP	Recei	ved: 04-DEC	-07 By	<u>:</u>
J78054-2A	SW846 6010B	13-DEC-07 00:35	ND	11-DEC-07	TG	ЕРВ
J78054-3A S2387-RAV	Collected: 03-DEC-07 N	16:20 By: MP	Receiv	ved: 04-DEC-	-07 By	: ` · · · ·
J78054-3A	SW846 6010B	13-DEC-07 00:40	ND	11-DEC-07	TG	ЕРВ

1.2

•

Internal Sample Tracking Chronicle

Entact Houston

Job No:

J78054

Chevron, Perth Amboy Project No: CVX 108

Sample

Number Method

Analyzed

13-DEC-07 00:45 ND

By Prepped

By Te

Test Codes

J78054-4A Collected: 03-DEC-07 16:25 By: MP Received: 04-DEC-07 By:

S2197-RAS

J78054-4A SW846 6010B

11-DEC-07 TG

EPB

17 of 131 **EACCUTEST.**J78054

Accutest Internal Chain of Custody Job Number: J78054

Account: Project:

EHTXF Entact Houston Chevron, Perth Amboy

Received:

12/04/07

Sample. Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason
J78054-1.1	Secured Storage	Adam Scott	12/06/07 08:59	Retrieve from Storage
J78054-1.1	Adam Scott	Adam Ellenberger		Custody Transfer
J78054-1.1	Adam Ellenberger	Secured Storage		Return to Storage
J78054-1.1	Secured Storage	Adam Scott		Retrieve from Storage
J78054-1.1	Adam Scott	Tyler Strauss		Custody Transfer
J78054-1.1	Tyler Strauss	Secured Storage		Return to Storage
J78054-1.1	Secured Storage	Adam Scott		Retrieve from Storage
J78054-1.1	Adam Scott	Teresa Guziak		Custody Transfer
J78054-1.1	Teresa Guziak	Secured Storage		Return to Storage
J78054-1.1	Secured Storage	Todd Shoemaker		Retrieve from Storage
J78054-1.1	Todd Shoemaker	Joshua Frenkel		Custody Transfer
J78054-1.1	Joshua Frenkel	Secured Storage		Return to Storage
J78054-1.1.1	Adam Ellenberger	TCLP	12/06/07 16:25	Leachate from J78054-1.1
J78054-1.1.1	TCLP	Adam Ellenberger		Leachate from J78054-1.1
J78054-1.1.1	Adam Ellenberger	Secured Storage		Return to Storage
J78054-1.1.1	Secured Storage	Teresa Guziak		Retrieve from Storage
J78054-1.1.1	Wei Zbou	Secured Storage		Return to Storage
-	ed to secure storage, but ina			3
J78054-1.1.2	TCLP	Adam Ellenberger	12/07/07 09:13	Leachate from J78054-1.1
J78054-1.1.2	Adam Ellenberger	Secured Storage		Return to Storage
J78054-1.1.3	Teresa Guziak	Metals Digestion	12/11/07 16:18	Digestate from J78054-1.1.
J78054-1.1.3	Metals Digestion	Teresa Guziak		Digestate from J78054-1.1.
J78054-1.1.3	Teresa Guziak	Metals Digestate Storage		Return to Storage
J78054-1.1.4	Joshua Frenkel	Metals Digestion	12/21/07 09:59	Digestate from J78054-1.1
J78054-1.1.4	Metals Digestion	Joshua Frenkel		Digestate from J78054-1.1
J78054-1.1.4	Joshua Frenkel	Metals Digestate Storage		Return to Storage
J78054-1.1.4	Metals Digestate Storage	Rakesh Pathak		Retrieve from Storage
J78054-1.1.4	Rakesh Pathak	Metals Digestate Storage		Return to Storage
J78054-2.1	Secured Storage	Adam Scott	12/06/07 08:59	Retrieve from Storage
J78054-2.1	Adam Scott	Adam Ellenberger		Custody Transfer
J78054-2.1	Adam Ellenberger	Secured Storage		Return to Storage
J78054-2.1	Secured Storage	Adam Scott		Retrieve from Storage
J78054-2.1	Adam Scott	Tyler Strauss		Custody Transfer
J78054-2.1	Tyler Strauss	Secured Storage		Return to Storage
J78054-2.1	Secured Storage	Adam Scott		Retrieve from Storage
J78054-2.1	Adam Scott	Teresa Guziak		Custody Transfer
J78054-2.1	Teresa Guziak	Secured Storage		Return to Storage
J78054-2.1	Secured Storage	Todd Shoemaker		Retrieve from Storage
-	Todd Shoemaker	Joshua Frenkel		Custody Transfer

Accutest Internal Chain of Custody
Job Number: J78054
Account: EHTXF Entact Houston
Project: Chevron, Perth Amboy
Received: 12/04/07

Sample. Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason
J78054-2.1	Joshua Frenkel	Secured Storage	12/21/07 13:02	Return to Storage
J78054-2.1.1	Adam Ellenberger	TCLP	12/06/07 16:25	Leachate from J78054-2.1
J78054-2.1.1	TCLP	Adam Ellenberger		Leachate from J78054-2.1
J78054-2.1.1	Adam Ellenberger	Secured Storage	12/07/07 09:13	Return to Storage
J78054-2.1.1	Secured Storage	Teresa Guziak		Retrieve from Storage
J78054-2.1.1	Wei Zhou	Secured Storage	12/12/07 08:06	Return to Storage
Bottle was return	ned to secure storage, but ina	dvertently not scanned.		
J78054-2.1.2	TCLP	Adam Ellenberger	12/07/07 09:13	Leachate from J78054-2.1
J78054-2.1.2	Adam Ellenberger	Secured Storage	12/07/07 09:13	Return to Storage
J78054-2.1.3	Teresa Guziak	Metals Digestion	12/11/07 16:18	Digestate from J78054-2.1.1
J78054-2.1.3	Metals Digestion	Teresa Guziak		Digestate from J78054-2.1.1
J78054-2.1.3	Teresa Guziak	Metals Digestate Storage	12/11/07 16:19	Return to Storage
J78054-2.1.4	Joshua Frenkel	Metals Digestion	12/21/07 09:59	Digestate from J78054-2.1
J78054-2.1.4	Metals Digestion	Joshua Frenkel		Digestate from J78054-2.1
J78054-2.1.4	Joshua Frenkel	Metals Digestate Storage		Return to Storage
J78054-2.1.4	Metals Digestate Storage	Rakesh Pathak		Retrieve from Storage
J78054-2.1.4	Rakesh Pathak	Metals Digestate Storage		Return to Storage
J78054-3.1	Secured Storage	Adam Scott	12/06/07 08:59	Retrieve from Storage
J78054-3.1	Adam Scott	Adam Ellenberger		Custody Transfer
J78054-3.1	Adam Ellenberger	Secured Storage		Return to Storage
J78054-3.1	Secured Storage	Adam Scott		Retrieve from Storage
J78054-3.1	Adam Scott	Tyler Strauss		Custody Transfer
J78054-3.1	Tyler Strauss	Secured Storage		Return to Storage
J78054-3.1	Secured Storage	Adam Scott		Retrieve from Storage
J78054-3.1	Adam Scott	Teresa Guziak		Custody Transfer
J78054-3.1	Teresa Guziak	Secured Storage		Return to Storage
J78054-3.1	Secured Storage	Todd Shoemaker	12/21/07 08:10	Retrieve from Storage
J78054-3.1	Todd Shoemaker	Joshua Frenkel		Custody Transfer
J78054-3.1	Joshua Frenkel	Secured Storage		Return to Storage
J78054-3.1.1	Adam Ellenberger	TCLP	12/06/07 16:25	Leachate from J78054-3.1
J78054-3.1.1	TCLP	Adam Ellenberger		Leachate from J78054-3.1
J78054-3.1.1	Adam Ellenberger	Secured Storage	12/07/07 09:13	Return to Storage
J78054-3.1.1	Secured Storage	Teresa Guziak		Retrieve from Storage
J78054-3.1.1	Wei Zhou	Secured Storage		Return to Storage
Bottle was return	ed to secure storage, but ina			Ü
J78054-3.1.2	TCLP	Adam Ellenberger	12/07/07 09:13	Leachate from J78054-3.1
J78054-3.1.2	Adam Ellenberger	Secured Storage		Return to Storage
		· · · · · · · · · · · · · · · · · · ·	_,, 3. 33.23	

Chevron, Perth Amboy 12/04/07

Project: Received:

Sample.Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason
				
J78054-3.1.3	Teresa Guziak	Metals Digestion	12/11/07 16:18	Digestate from J78054-3.1.1
J78054-3.1.3	Metals Digestion	Teresa Guziak		Digestate from J78054-3.1.1
J78054-3.1.3	Teresa Guziak	Metals Digestate Storage		Return to Storage
J78054-3.1.4	Joshua Frenkel	Metals Digestion	12/21/07 09:59	Digestate from J78054-3.1
J78054-3.1.4	Metals Digestion	Joshua Frenkel		Digestate from J78054-3.1
J78054-3.1.4	Joshua Frenkel	Metals Digestate Storage	12/21/07 12:58	Return to Storage
J78054-3.1.4	Metals Digestate Storage	Rakesh Pathak	12/21/07 16:26	Retrieve from Storage
J78054-3.1.4	Rakesh Pathak	Metals Digestate Storage		Return to Storage
J78054-4.1	Secured Storage	Adam Scott		Retrieve from Storage
J78054-4.1	Adam Scott	Adam Ellenberger		Custody Transfer
J78054-4.1	Adam Ellenberger	Secured Storage		Return to Storage
J78054-4.1	Secured Storage	Adam Scott		Retrieve from Storage
J78054-4.1	Adam Scott	Tyler Strauss		Custody Transfer
J78054-4.1	Tyler Strauss	Secured Storage		Return to Storage
J78054-4.1	Secured Storage	Adam Scott		Retrieve from Storage
J78054-4.1	Adam Scott	Teresa Guziak		Custody Transfer
J78054-4.1	Teresa Guziak	Secured Storage		Return to Storage
J78054-4.1	Secured Storage	Todd Shoemaker		Retrieve from Storage
J78054-4.1	Todd Shoemaker	Joshua Frenkel		Custody Transfer
J78054-4.1	Joshua Frenkel	Secured Storage	12/21/07 13:02	Return to Storage
J78054-4.1.1	Adam Ellenberger	TCLP		Leachate from J78054-4.1
J78054-4.1.1	TCLP	Adam Ellenberger	12/07/07 09:13	Leachate from J78054-4.1
J78054-4.1.1	Adam Ellenberger	Secured Storage	12/07/07 09:13	Return to Storage
J78054-4.1.1	Secured Storage	Teresa Guziak		Retrieve from Storage
J78054-4.1.1	Wei Zhou	Secured Storage		Return to Storage
Bottle was return	ned to secure storage, but inac			-
J78054-4.1.2	TCLP	Adam Ellenberger		Leachate from J78054-4.1
J78054-4.1.2	Adam Ellenberger	Secured Storage		Return to Storage
J78054-4.1.3	Teresa Guziak	Metals Digestion		Digestate from J78054-4.1.1
J78054-4.1.3	Metals Digestion	Teresa Guziak	12/11/07 16:19	Digestate from J78054-4.1.1
J78054-4.1.3	Teresa Guziak	Metals Digestate Storage		Return to Storage
J78054-4.1.4	Joshua Frenkel	Metals Digestlon	12/21/07 09:59	Digestate from J78054-4.1
J78054-4.1.4	Metals Digestion	Joshua Frenkel		Digestate from J78054-4.1
J78054-4.1.4	Joshua Frenkel	Metals Digestate Storage		Return to Storage
J78054-4.1.4	Metals Digestate Storage	Rakesh Pathak		Retrieve from Storage
J78054-4.1.4	Rakesh Pathak	Metals Digestate Storage		Return to Storage
J78054-4.1.4	Metals Digestate Storage	Wally Pimental		Retrieve from Storage

Accutest Internal Chain of Custody Job Number: J78054

EHTXF Entact Houston Account: Chevron, Perth Amboy Project:

Received: 12/04/07

Sample. Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason
J78054-4.1.4	Wally Pimental	Metals Digestate Storage	12/24/07 16:19	Return to Storage

Page 4 of 4

Metals Analysis

QC Data Summaries

Includes the following where applicable:

- · Instrument Runlogs
- Initial and Continuing Calibration Blanks
- Initial and Continuing Calibration Checks
- · High and Low Check Standards
- Interfering Element Check Standards
- · Method Blank Summaries
- Matrix Spike and Duplicate Summaries
- Blank Spike and Lab Control Sample Summaries
- Serial Dilution Summaries

Accurest Laboxatorieo Instrument Runlog Inorganacs Analyses

togin Number: J78054 Actount: EHTXF - Entact Houston Project: Chevron, Perth Amboy

File 1D: 1T120507M1.DAT Analyot: ND Parametera: Pb

Date Analysed: 12/05/07 Run 1D: MA20199

Methods: EPA 200.7, SW846 6010B

Time	Sample Description	Dilution PS Factor Recov	Comments
09:54	MA20199-STD1	1	STDA
10:00	MA20199-STD2	1	%TDB
10:06	MA20199-STD3	ř	STDC
10:13	MA20199-STD4	1	STDD
10:19	MA20199-STD5	1	STDE
10:25	MA20199-STD6	1	STDF
10:31	MA20199-STD7	1	STDG
10:38	MA20199-STD8	ì	STDH
10;44	MA20199-STD9	<u>1</u>	STD1
11:25	MA20199-ICCV1	<u> </u>	
11:34	MA20199-HSTD1		
11:40	MA20199~CR1B1	1	
11:46	MA20199-CR1A1	1	
11:56	MA20199-1CV1	1	
12:02	MA20199-10B1	1	
12:09	MA20199-1CCV2	· _	
12:16	MA20199-CCB1	2	
12:27	MA20199-1CSA1	1	
12:34	MA20199-1CSAB1	ž	
12:46	MA20199-CCV1	† ^	
12:52	MA20199-CCB2	1	
13:06	222222	3	
13:12	ZZZZZZ	1	
13:18	222222	3	
13:24	222222	1	
13:30	221272	2,0	
13:36	MP41778-MB2	1	
13:42	MP41778-LC1	<u>;</u>	
13:48	222222	ĭ	
13:54	ZZ2Z2Z	1	
14:00	MA20199-CCV2	1	
14:07	MA20199-0083	1	
14:13	MF41826-MB1	1	

Actitest Laboratories Instrument Runlog Inorganica Analyses

Login Number: J78054 Account: EHIXF - Enract Houston Project: Chevron, Perth Amboy

File 1D: 171Z0507M1.DAT Analyst: ND Parameters: Pb

Date Analyzed: 12/05/07 Run 3D: MAZ0199

Methods: EPA 200.7, 20846 6010B

T'ime	Sample Description	Dilution Factor	PS Recov	Comments
14:1	9 MP41826-B1	1		
14:Z	5 MP41826-01	1		
14:3	2 MP41826-SZ	1		
24:3	8 377 7 10-1	1		(sample used for QC only; not part of login J78054)
	4 MP41826-SD1	5		
	reportable sample O 222222	/prep for 1	300 J180	54
14:5	6 ZZZZZZ	1		
15:0	Z ZZZZZZ	1		
15:0	8 MAZ0199~CCV3	1		
15:1	5 MA20199-CCB4	2		
15:2	1 222222	1		
15:2	8 ZZZZZZ	1		
15:3	3 772722	1		
15:3	9 222222	1		
15:4	5 MP4178S-MB2	1		
15:5	1 MP41788-BZ	1		
15:5	7 22222	1		
16:0	3 ZZZZZZ	1		
16:0	9 222222	1		
16:1	5 MAZ0199-CCV4	1		
16:2	1 MA20199-CCB5	1		
16:Z	8 MA20199-CR182	1		
16:3	7 MA20199~1CSA2	1		
16:4	3 MA20199-1CSABZ	1		
16:5	O ZZZZZZ	ì		
16:5	6 MA20199-2CV5	<u>1</u>		
Last	Z MAZ0199-CCB6 .reportable CCB fo 8 3ZZZZZ	1 or job J78 10	054	
17:1	4 ZZZZZZ	1		
17:2	l żzzzzz	1		
17:2	7 ZZZZZZ	1		
17:3	3 ZZZZZ	1		
17:3	9 323222	1		

Accutest Laboratories Instrument Runlog lnorganics Analyses

Login Number: J78054 Account: EHTXF - Entact Houston Project: Chevron, Perth Amboy

File ID: IT120507M1.DAT

Analyst: ND Parameters: Pb

Date Analyzed: 12/05/07 Methods: EPA 200.7, SW846 6010B

Pun ID:	MA20199	J
---------	---------	---

Time	Sample Description	Dilution Factor	PS Recov	Comments
17:45	232ZZZ	1	•	
17:51	ZZZZZZ	1		
17:57	ZZZZZZ	1		
18:03	222222	1		
18:10	MA20199-CCV6	1		
18:16	MA20199-CCB7	1		
18:22	22222	1		
18:28	Z2ZZ2Z	1		
18:34	MP41791-St	1		
18:41	MP41791-s2	1		
18:47	J76752-1	1		(sample used for QC only; not part of login J78054)
18:53	MP41791-SD1	5		
18:59	222222	1		
19:05	ZZZZZZ	1		
19:11	ZZZZZZ	1		
19:17	ZZZ % % Z	1		
19:24	MA20199-CCV7	<u>1</u>		
19:30	MA20199-CCB8	1		
19:36	222222	1		
19:42	22222	1		
19:48	ZZZZZZ	1		
19:55	ZZZZZZ	3		
20:01	ZZZZZZ	1		
20:07	TZZZZZ	1		
20:13	22222	1		
20:39	ZZZZZZ	1		
20:25	22222	1		
20:31	ZZZZZZ	1		
20:37	MA20199-CCV8	1		
20:44	MA20199-CCB9	1		
	222222			
20:56	222222	1		
21:03	ZZZZZZ	1		

Accutest Laboratories Instrument Runlog Inorganics Analyses

Login Number: J78054 Actounf: EHTXF - Entact Houston Project: Chevron, Feith Amboy

File ID: IT120507M1.DAT

Analyst: ND Parameters: Pb

Date Analyzed: 12/05/07

Methods: EPA 200.7, 5W846 6010B

Run ID: MA20199

Time	Sample Description	Dilution Factor	PS Recov	Comments
21:09	MP41814-MB1	1		
21:15	MP41814-B1	1		
21:21	MP41814-S1	1		
21:27	MP41814+52	1		
21:33	J17806-9	\$		(sample used for QC only; not part of login J78054)
21:39	MP41814-SD1	5		
21:45	22222	1		
21:51	MA20199-CCV9	1		
22:03	MA20199-CCB10	1		
22:10	22222	1		
27:16	222222	1		
22:22	ZZYZZ2	1		
22:28	22222	1		
22:34	22222	1		
22;40	ZZZZZZ	1		
22:46	32 22 22	1		
22:53	222222	3		
Z2:59	ZZZZZŻ	:		
23:05	222222	1		
23:11	MA20199-CCV10	1		
23:17	MA20199-CCB11	1		
23:48	MA20199-CRIB3	1		
23:55	MA20199-fCSA3	1		
00;03	MA20199+ICSAB3	1		
00:14	MA20199+CCV11	1		
00:20	MA20199+CCB12	1		
00:27	222223	1		
00:41	223222	i		
00:47	232828	1		
00:53	223222	1		
00:59	22222	1		
01:05	222222	3		
01:11	222232	1		

Accutest Laboratories Instrument Runlog Inorganics Analyses

Login Number: J78054 Account: EHTXF ~ Entact Houston Project: Cheuron, Perth Amboy

File 1D: IT120507M1.DAT

Analyst: ND Parameters: Pb

Date Analyzed: 12/05/07 Methods: SPA 200.7, SW846 60108

Run	ID:	MA20199
-----	-----	---------

Time	Sample Description	Oxlution PS Factor Recov	Comments
01:17	MP41817~MB1	1	
01:23	MP41827~B1	1	
01:30	MP41827~S1	1	
Ū1:36	MA20199~CCV12	1	
01:42	MA20199~CCB13	1	
01:48	MP41827~S2	1	
01:54	<i>3</i> 77809 <u>~</u> 1	1	(sample used for QC only; not part of login J78054)
02:01	MP41827~SD1	5	
02:07	MP41788~S1	1	
02:13	MP41788~S2	1	
02:19	J76787~3	1	(sample used for QC only; not part of login $\mathcal{J}78054$)
02:25	MP41788~SD1	5	
02:31	322727	2	
02:37	%%%%%%	1	
02:44	ZZZZZZ	7	
02:50	MA20199~CCV13	i	
02:56	MA20199~CCB14	1	
03:02	222223	2	
03:08	ZZZZZZ	2	
03:15	22222	1	
03:21	ZZ3Z3Z	1	
03:27	ZZZZZZ	7	
03:33	222227	1	
03:39	Z3ZZ3Z	1	
03:45	222322	1	
03:51	232222	1	
03:58	ZZZZZZ	1	
04:04	MA20199~CCV14	1	
04:10	MA20199~CCB15	1	
04:16	22222Z	1	
04:23	222322	1	
04:29	222222	1	
04:35	ZZZZZZ	2	

Accutest Laboratories Instrument Runlog Inorganics Analyses

Logir Number: J78054 Account: ERTXF + Entact Rouston Project: Chevron, Perth Amboy

File ID: IT120507M1.DAT

Analyst: ND Parameters: Pb

Date Analyzed: 12/05/07 Methods: EPA 200.7, SW846 6010B

F	Run	ID:	MA20199

Time	Şample Description	Dilution Factor	PS Recov	Commen t s	
G4:41	223223	1		·····	
04:47	232222	1			
D4:53	222222	1			
04:59	222222	2			
05:06	MA20I99-CÇV15	1			
05:12	MA20199-CCB16	1			
05:18	ZZZZZ2	1			
05:24	272222	1			
05:30	ZZZZZZ	1			
05:36	MA20199-ÇCV16	1			
05:43	MA20199-CCB17	1			
07:34	MA20199-ICSA4	1			
07:40	MA20199-IÇSAB4	i			
07:49	MA20199+CÇV17	1			
07:56	MA20199+CCB18	1			
09:05	22222Z	1			
08:14	ZZZZZZ	1			
08:20	ZZZ3Z2	1			
08:25	ZZZZZZ	1			
08:32	ZZ3ZZZ	25			
08:40	2222Z	100			
08:49	ZZZZZZ	1000			
08:56	22222	1			
09:11	MA20199+10SA5	1			
09:17	MA20199-1C\$AB5	1			
09:23	MA20199-ÇCV18	1			
09:30	MA20199+CCB19	7 m			
Dofor	++ d-+- =				

Refer to raw data for calibration curve and standards.

Login Mumber: J78054 Account: EHTXF ~ Entact Houston Project: Chevron, Perth Amboy

File LD: IT120507M1.DAT Analyst: ND

Parameters: Pb

Date Analyzed: 12/05/07

Methods: EPA 200.7, SM846 6010B

ജur ID: MA20չ99

Time	Sample Description	Iscd#]
09:54	MA20199~8TD1	83014 R
10:00	MA20199~STD2	82976
10:06	MA20199~STD3	83091
10:13	MA20199~STD4	82210
10:19	MA20199-STD5	82501
16:25	MA20199~5TD6	82055
10:31	MA20199~ST87	82893
10:38	MA20199~STD8	80671
10:44	MA20199~STD9	80539
11:25	MA20199~ICCV1	81272
11:34	MA20199~HSTD1	80425
12:40	MA20199~CRIB1	82853
11:46	MA20199-CR1A1	92138
11:56	MA20199ºICV1	80758
12:02	MA20199~ICB1	82354
12:09	MA20199-ICCV2	81064
12:26	MA20199~CCB1	82554
12:27	MA20199~10SA1	77198
12:34	MA20199~1CSAB!	47343
12:46	MA20199~0CV1	80454
12:52	MA20199~CCB2	82760
23:06	222222	82350
13:12	ZZZZZZ	82312
13:18	222222	82937
13:24	222822	83053
23:30	ZZZ222	82535
13:36	MP41778∠MB2	78494
13:42	MP41778~LC1	79814
13:48	ZZZZZZ	77928
13:54	222222	79243
14:00	MA20199~CCV2	80720
14:07	MA20199-CCB3	91587
14:13	MP41826~MB1	77803

Login Number: J78054 Account: EHTXF - Entact Houston Project: Chevron, Perth Amboy

File ID: 1T120507M1.DAT Analyst: N2

Analyst: N2 Parameters: Pb Date Asalyzed: 12/05/07

Methods: EPA 200.7, \$W846 6010B

Run ID: MA20199

Time	Sample Uescription	īstd∲l
L	MP41826-B1	78057
	MP41826-Si	79341
14:32	MP41826-32	79125
14:38	J77?10-1	78827
14:44	MP41826-SD1	81389
14:50	ZZZZZZ	79021
14:56	ZZZZZZ	77846
15:02	222222	79335
15:08	MA20199-CCV3	80357
15:15	MA20199~CCB4	82997
15:21	2Z2ZZZ	79726
15:28	222222	82700
15:33	IZZZZZ	81978
15:39	2222Z	79697
15:45	MP41788-MB2	82276
15:51	MP41788-B2	82162
15:57	ZZ2ZZZ	85692
16:03	ZZZZZZ	86922
16:09	ZZ%ZZZ	87683
16:15	MA20199-CCV4	81570
16:21	MA20199-CCB5	82309
16:28	MA20199-CRIR2	82672
16:37	MA20199-ICSA2	75233
16:43	MA20199-1CSAB2	76417
16:50	22222	79369
16:56	MA20199-CCV5	80745
17:02	MA20199-CCB6	82438
17:08	222322	81737
17:14	22222	82261
17:21	ZZZZZZ	80694
17:27	222223	81292
17:33	222222	S0443
17:39	222223	79350

Logán Number: J78054 Account: EHTXF ~ Entact Houston Project: Chevron, Perth Amboy

Esse ID: IT120507M2.DA7 Analyst: ND

Analyst: ND Parameters: Pb Date Analyked: 12/05/07 Run ID: MAZ0199 Methids: EPA 200.7, BW846 6010B

Run ID: MAZ0199

ĭime	Sample Description	Istd#1
	ZZZZZŽ	
	ZZ	79325
17:57	ZZZZZZ	78469
	ZZZZZZ	82085
38:10	MA20199~CCV6	81127
18:16	MA28199~CCB7	82630
18:22	ZZZZZZ	80871
18:28	222222	82307
	MP41791~S1	80782
18:41	MP41791~S2	80270
28:47	J76752~1	82222
18:53	MP41791~SD1	82017
18:58	Z5233 <u>Z</u>	81239
19:05	ZZZZZZ	79797
19:11	ZZZZZZ	80932
:9:17	222222	81607
19:24	MA20199~CCV7	80719
19:30	MA20399~CCB8	81918
19:36	22222	81480
19:42	22222	81770
19:48	22222	81526
19:55	ZZZZZZ	80573
20:01	27222%	80605
20:07	222222	81247
20:13	ZZZZZZ	81278
20:19	ZZZZZZ	83571
20:25	Zzzzzz	82065
20:31	ZZZZZZ	81805
20:37	MA20199~CCV8	81051
20:44	MA20199~ССВ9	82035
20:50	Zzzzzz	82039
20:56	Z2223Z	80516
21:03	Z3222Z	80163

Login Number: J78054 Account: EHTXF - Entart Houston Project: Chevron, Perth Amboy

File ID: IT120507M1.DAT Analyst: ND

Farameters: Pb

Date Analyzed: 12/05/07 Run 1D: MAZ0199

	Sample	
	Description	
	MP41814~MB1	
	MP41814~81	
21:21	MP41814~S1	86636
21:27	MP41814~92	85429
21:33	Jĭ7806~9	88046
21:39	MF41814~5D1	83779
21:45	22222	87200
21:51	MA20199-CCV9	79831
22:03	MA20199~CCB10	81875
22:10	122222	83566
22:16	ZZZ Ź ZZ	84503
22:22	322222	83987
22:28	222222	83811
22:34	222222	84396
22:40	223322	84617
22:46	222222	97208
22:53	22222	90772
22:59	2 2 2222	88500
23:05	222722	85828
23:11	MA20199~CCV10	80533
23:17	MA20199~CCB11	82405
23:48	MA20199-CRIB3	82000
23:55	MA20199~ICSA3	76675
	MA20199~1CSA83	
00:14	MA20199~CCVL1	80780
	MA20199~CC812	
		97445
		90126
		85997
		92715
		89716
		85040
		86723
VI,11		00,23

Login Number: J78054 Account: EMTXF ~ Entact Houston Project: Chevron, Perth Amboy

File ID: I7120507ML.DAT Analyst: ND

Parameters: Pb

Oate Analyred: 12/05/07 Run ED: MAZ0199

Time	Sample Description	Iatd‡1
01:17	MP41827~MB1	79043
01:23	MP41827~B1	85296
01:30	MP41827-31	81386
01:36	MA20199~CCV12	£2526
01:47	MA20199~CCB13	84155
Q1:48	MP41827-S2	80206
01:54	J77809-1	81624
02:01	MP41827-SD1	83444
02:07	MP41788~S1	84812
02:13	MF41788~S2	84751
02:19	J76787-3	86404
02:25	MP41788≂SDî	85220
02:31	22222	86934
Q2:37	22222	87166
G2:44	22222	86126
02:50	MA70199~CCV13	83130
02:56	MA20199~CCB14	84208
03:02	Z Z Z Z Z Z	86974
80:50	ZZZZZZ	87784
03:15	ZZZZZZ	86495
03:21	22222	86960
03:27	22222	86865
03:33	ZZZZZZ	85834
03:39	ŹZZZZZ	86043
03:45	22222	85347
03:51	2 22222	86205
03:58	ZZZZZZ	95532
04:04	MA20199-CCV14	83126
04:10	MA20199~CCB15	83554
04:16	ZZ22ZZ	86692
04:23	Z Z Z Z Z Z	88437
04:29	22222	81082
04:35	22222	80845

Login Number: J78354 Account: EHTXF - Engact Houston Project: Chevron, Perth Amboy

File ID: IT;20507M1.DAT

Analysi: ND Parameters: Pb

Date Analyzed: 12/05/07 Run ID: MA20199

ime	Sample Description	Istd#1	
04:41	ZZZZZZ	81460	
04:47	222282	81770	
04:53	ZZZZZZ	80014	
04:59	22222	81776	
05:06	MA20199-CCV15	81863	
05:12	MA20199-CCB16	84959	
05:18	ZZZZZ?	80509	
05:24	222222	80557	
05:30	ZZZZZZ	82763	
05:36	MA20199-CCV16	84007	
05:43	MA20199-CCB17	83429	
07:34	MA20199-1CSA4	77844	
07:40	MA20199-ICEAB4	79171	
07:49	MA20199-CCV17	82725	
07:56	MA20199-CCB18	84840	
08:05	222322	80125	
08:14	ZZZZZZ	88112	
08:20	ZZZZZZ	86946	
08; <i>2</i> 5	22222	79671	
08:32	ZZZZZZ	86291	
08:40	222222	83003	
08:49	ZZZZZZ	84352	
08:56	ZZZZZZ	82890	
09:11	MA20199-ICSA5	77386	
09:17	MA20199-ICSAB5	77783	
09:23	MA20199-CCV18	81628	
09:30	MA20199-CCBi9	84010	
R = Ref	ference for IST	D limits. ! → Cutside	limiţs.
LEGEND:		Fimito	
	Yttrium	Limits 60-125 %	

BLANK RESULTS SUMMARY Part 1 - Initial and Continuing Calibration Blanks

Login Number: J76054 Acrount: EHTXF - Entact Houston Project: Chevron, Perth Amboy

File ID: IT120597M1.DAT QC limits: result < RL Date Analyzed: 12/05/07 Rus ID: MA20199

Methods: EPA 200.7, SW846 6010B

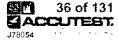
Units: ug/l

Time: Sample ID:	P.	- 10 -	12:02 ICBl		±2:16 CCB1		12:52 CCB2		14:07 CCB3	
Metal	RL	žDL	raw	final	Iaw	final	raw	final	raw	final
Aluminum	200	26	anr							
Antimony	6.0	5.3	anr							
Arsenic	8.0	4.2	anr							
Barıum	200	.3	anr							
Beryllium	1.0	.2	φnp							
Cadmı um	4.0	. 4	anr							
Calcium	5000	85	anr							
Chromium	10	.9	anr							
Cobalt	50	1.1	anr							
Copper	25	1.3	anr							
Iron	100	8.3	anr							
Lead	3.0	2.7	-1.4	<3.0	-0.41	<3.0	2.6	<3.0	7.6	* (a)
Magnesium	2000	24	anr							
Manganese	15	, 4	suz							
Molybdenum	20	1.2								
Nickel	40	1.7	atr							
Palladium	50	5.8								
Potassium	10000	66	anr							
Selenium	10	3.9	arr							
Silicon	250	6.6								
Silver	10	1.5	anr							
Sodium	10000	480	anr							
Thallium	10	5	anr							
Tín	10	2.7								
Vanadium	50	1.6	anr							
Zinc	20	4.2	anr							

^(*) Dutside of QC limits

⁽anr) Analyte not requested

⁽a) Within RML limits for TCLP leachates and soils and lebs than 3 times the IDL for this element. Only TCLP and soil samples reported for this element in the area bracketed by this QC.


Login Number: J78054 Account: EHTXF - Entact Houston Project: Chevron, Perth Amboy

File ID: ITI20507M1.DAT QC Limits: result < RL Date Analyzed: 12/05/07 Run 1D: MA20199

Methods: SPA 200.7, 3W846 6010B

Ubits: ug/l

Time: Sample ID: Metal	RL	IDL	15:15 2CB4 raw	final	16:21 CCB5 raw	final	17:02 CCB6 raw	fínal
Aluminum	200	26	ānr					
Antimony	6.0	5.3	anr					
Arsenic	8.0	4.2	anr					
Barıum	200	. 3	atr					
Beryllium	1.0	. 2	anr					
Cadmium	4.0	. 4	anr					
Calcium	5000	85	asr					
Chromium	10	. 9	anr					
tobalt	50	1.1	ıası					
Copper	25	1.3	anı					
Iron	100	8,3	anr					
Lead	3.0	2.7	2.0	<3.0	-1.1	<3.0	-2.2	<3.0
Magnesium	5000	24	anr					
Manganese	15	. 4	ànr					
Molybdenum	20	1.2						
Nickel	40	I.7	anr					
Palladium	50	5.8						
Potassium	10000	66	anr					
Selenium	10	3.9	ānr					
3ilicon	200	6.6						
Silver	10	1.5	anr					
Sodium	10000	480	anr					
Thallium	10	5	anr					
Tin	10	2.7						
Vanadium	50	1.6	anr					
Zinc	20	4.2	anr					

CALIBRATION CHECK STANDARDS SUMMARY Initial and Continuing Calibration Checks

Login Number: J78054 Account: EHTXF ~ Entact Houston Project: Chevron, Perth Amboy

12:46

Fife ID: IT120507M1.DAT QC Limits: 95 to 105 % Recovery

11:56

Time:

Dare Analyzed: 12/05/07 Run ID: MA20199 Methods: EPA 200.7, SW846 6010B Units: ug/l

14:00

un ID: MA20399 Units: ug.

Sample ID: Metal	1CV True	ICV1 Results	ኑ Rec	CCV True	CCV1 Results	% Rec	CCV True	CCV2 Results	% Rec
Aluminim	anr								
Antimony	anr								
Arsenic	anr								
Barium	anr								
Beryllium	anr								
Cadmium	anr								
Calcium	anr								
Chromium	anr								
Cobalt	anr								
Copper	anr								
Iron	anr								
Lead	1600	988	98.8	2000	1890	94.5	2000	1970	98.5
Magnesium	anr								
Manganese	ar.r								
Molybdenum									
Nickel	anr								
Palladium									
Potassium	anr								
Selenium	anr								
Silícon									
Silver	anr								
Sodium	anr								
Thailium	anı								
Tin									
Vanadium	anr								
Zinc	anr								
(*) Outside of (anr) Analyte									

CALIBRATION CHECK STANDARDS SUMMARY Initial and Continuing Calibration Checks

Login Number: J78054 Account: EHTXF - Entact Houston Project: Chevron, Perch Amboy

File ID: STIZ0507M1.DAT QC Limics: 95 to 105 % Recovery Date Analyted: 12/05/07 Run 1D: MA20199 Methods: EPA 200.7, SW846 6010B

Onits: ug/l

Time: Sample ID: Metal	CCV True	15:08 CCV3 Results	% Rec	CCV True	16:15 CCV4 Results	% Rec	CCV True	16:56 CC V5 Results	% Rec
Aluminum	anr				***************************************				
Antimony	anı								
Arsenic	anr								
Barium	anr								
Berylliom	anı								
Cadmium	anr								
Calcium	anr								
Chromium	anr								
Cobalt	anr								
Copper	anr								
Iron	anr								
Lead	2000	1940	97.0	2000	1950	97.5	2000	1970	98.5
Magnesium	ans								
Manganese	anı								
Molybdetum									
Nickel	ans								
Palladium									,
Potassium	anr								
Selenium	anr								
Silicon									
Silver	anr								
Sodżum	anr								
Thallium	anr								
Tín									
Vanadıum	ans								
2inc	anr								
(*) Outside of (anr) Analyte									

Page 2

HIGH STANDARD CHECK JUMMARY

Login Number: JT8054 Account: EHTXF - Entact Houston Project: Chevron, Perth Amboy

File ID: IT120507M1.DAT QC Limits: 95 to 105 % Recovery Date Analyzed: 12/05/67 Run 1D: MAZ0193

Methods: EPA 200.7, SW846 6010B Units: ug/1

Time: Sample JD: Metal	H5TD True	11:34 HSTD1 Results	% Rec
Aluminum	an:		
Antimony	anr		
Arsenit	anr		
Barium	anr		
Beryllium	anr		
Cadmium	anr		
Calcium	anr		
Chromium	anr		
Cobalt	anr		
Copper	anr		
Iron	anr		
Lead	4000	3980	99.5
Magnesium	ânr		
Manganese	anr		
Molybdenum			
Nickel	anr		
Palladıum			
Potassium	anr		
Selenium	anı		
Silicon			
Silver	anr		
Sodium	anr		
Thallium	anr		
Tin			
Vanadium	anr		
Zinc	arır		
(*) Outside of	ÇC limit	t.s	

(anr) Analyte not requested

LOW CALIBRATION CHECK STANDARDS SUMMARY

Login Number: J78054 Account: EHTXF - Entact Houston Project: Chevron, Perch Amboy

File JD: IT120507M1.DAT QC Limits: 50 to 150 % Recovery

Date Analyzed: 12/05/07 Run ID: MA20199 Methods: EPA 200.7, SW846 6010B

Units: ug/l

Time: Sample ID: Metal	CRI True	CR1A True	11:46 CR!Aî Resulta	5 Rec
Aiuminum				
Antimony	120	10		
Arsenic	20	20		
Barıum	400			
Beryllium	10	2.0	anr	
Cadmium	10			
Calcium				
Chromium	20			
Cobalt	100			
Copper	50			
Iron				
Lead	6.0	6.0		
Magnesium				
Manganese	30			
Molybdenum	40			
Nickel	80			
Palladium	100			
Potassium				
Selenium	10	10		
Silicon				
Silver	20			
Sodium				
Thallium	20	20		
Tin				
Vanadium	:00			
Zinc	40			

INITIAL LOW CALIBRATION CHECK STANDARD SUMMARY

Login Number: J78044 Account: EMTXF - Entact Houston Project: Chevron, Perth Amboy

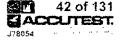
File ID: 1T120507M1.DAT QC Limits: 50 to 150 t Recovery

(*) Outside of QC limics (anr) Analyte not requested

Cate Analyzed: 12/05/07 Run IO: MA20199 Methods: EPA 200.7, SW846 6010B

Units: ug/1

Time: Sample ID: Metal	CRIB True	11;40 CRIB1 Repults	१ Rec	16:28 CRIB2 Resuits	% Rec
Aluminum	400				
Antimony	12				
Arsenic	:6				
Barium	400				
Beryllium	2.0				
Cadmium	8.0				
Calcium	5000				
Chromium	20				
Cobalt	100				
Copper	50				
Iron	200				
Lead	6.0	5.6	92.3	7.1	118.3
Magnesium	5000				
Manganese	30				
Molybdenum	40				
Nitkel	80				
Palladium	100				
Potassium	10000				
Selenium	20				
Sílicon	400				
Silver	20				
Sodium	10000				
Thallium	20				
Tin	20				
Vanadium	200				
Zinc	40				


1NTERFERING ELEMENT CHECK STANDARDS SUMMARY Part 1 - ICSA and ICSAB Standards

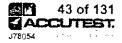
Login Number: J78054 Account: EHTXF - Entact Houston Project: Chevron, Perth Ambay

File 1D: JT120507N1.DAT QC Limits: 8G to 1Z0 % Recovery Date Analyzed: \(\siz/05/07\)
Run 10: MA20199

Methods: EPA 200.7, SW846 6010B Units: ug/1

Time: Sample LD: Metal	ICSA True	10SAB True	12:27 1CSAL Results	t Rec	12:34 1CSAB1 Results	% Rea	16:37 ICSA2 Results	% Rec	16:43 14SAB2 Results	₹ Rec
Aluminum	500000	500000	505000	102.0	506000	101.7	512000	102.4	510000	102.0
Antimony		1000	3.7		2050	105.0	-3.1		1040	104.0
Arsenia		1000	7.0		1040	104.0	5.4		1050	105.0
Barium		500	-0.14		537	106.4	-0.18		535	107.0
Beryllium		500	0.673		513	102.6	0.072		517	103.4
Cadmium		1000	1.9		1000	100.0	1.8		1010	101.5
Calcium	400000	400000	378000	94.5	377600	94.3	376000	94.0	380000	95.0
Chromium		500	2.7		487	97.4	2.0		491	98.2
Cobalt		500	-2.1		506	101.2	-2.7		509	101.8
Copper		500	-0.30		519	103.8	-1.1		522	104.4
Iron	200000	200600	192000	95.5	186000	93.0	190000	95.0	387000	93.5
Lead		7000	-0.26		993	99.3	5,3		975	97.5
Magnesium	500000	500000	510000	102.0	504000	100.8	502000	100.4	508000	101.€
Manganese		<u> </u>	3.9		507	201.4	4.6		509	1G1.8
Molybdenum		500	-2.8		499	99.8	-2.1		499	99.8
Nickeľ		1000	-2,3		952	95,2	-1.9		958	95.8
Palladium		500	5.4		524	104.8	3.4		526	105.2
Potassium			4190		4090		3960		4200	
Selenium		2000	-0.64		1040	104.0	1.1		1030	103.0
Silicon			-66		89.2		-63		88.4	
Silver		1000	-1.1		1080	0.801	-1.2		1090	109.0
Sodium			68.9		-350		72.4		-420	
Thallium		1000	-1.2		1010	201.0	3.2		1000	100,0
Tin			-3.5		5.0		-3.4		0.45	
Vanadium		500	-8.5		504	200.8	-8.8		504	300.8
Zinc		2000	0.75		982	98.2	1.2		990	99.0

Accutest Laboratories Instrument Ruslog lnorganics Analyses


Sogin Number: J78054 Account: EHTXF - Entact Houston Project: Chevron, Perth Amboy

File ID: IR121207M1.DAT

Parameters: Pb

Date Analyzed: 12/12/07 Run TD: MA20235

Time	Sample Description	Dilution Factor	PS Recov	Comments
09:43	MA20235~STD1	1		STDA
09:48	MA20235-STD2	1		STDB
09:54	MA20235-STD3	1		STDC
09:59	MA20235-STD4	2		5TDD
10:05	MAZ0235-STD5	1		STDE
10:10	MA20235-STD6	1		STDF
10:16	MA20235-STD7	1		STDG
10:21	MA20235-STD8	1		STDH
10:27	MA20235-STD9	ī		STDI
11:03	MA20235-STD10	1		STDB
11:10	MA20235-881D1	1		
11:16	MA20235-CRIB1	ì		
12:21	MA20235-CRIA1	1		
11:27	MA20235-1CV1	1		
11:32	MA20235-ICB1	<u>1</u>		
11:38	MA20235-ICCV1	1		
31:44	MA20235~CCB1	1		
11:54	MA20235-ICSA1	1		
12:00	MA20235-1CSAB1	1		
12:06	MA20235-CCV1	3		
12:11	MA20235-CCB2	1		
12:32	222222	3		
12:38	22222	1		
12:44	223222	1		
12:48	J77850~1	1		(sample used for OC only; nor part of login 378054)
12:53	22222	2		
12:58	222222	1		
13:03	ZZZZZZ	2		
13:09	222222	1		
13:13	MA20235~CCV2	1		
13:19	MA20235-CCB3	1		
13:24	233222	2		
13:30	223222	2		

Accutest Laboratozies Instrument Runlog lnorganižs Analyses

Login Number: J78054 Account: EHIXF - Entact Houston Project: Chevzon, Perth Amboy

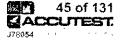
File 15: ZR121207M1.DAT Apalyst: ND Parameters: Pb

Gat∉ Analyzed: 12/12/07 Run ID: MA20235

Para	ameters: Pb		
Time	Sample Description	Dilukion PS Factor Recov	ζύmments
15:35	222223	10	
13:41	ZZZZZZ	2	
13:46	322222	٤	
13:51	ZZ3ZZZ	1	
L3:57	MP41872~Si	1	
չ4:02	MP41872~S2	1	
14:07	ZZZ%ZZ	1	
14:23	22222	ī	
14:18	MA20235-CCV2	1	
14;24	MA20235~CCB4	1	
14:29	ZZZZZZ	1	
14:35	Z2Z2Z	1	
14:40	222222	1	
14:45	22222	2	
14:51	MP41894~51	1	
14:56	MP41894~52	1	
15:02	J77894~j4	1	(pample used for QC only; not past of login 378034)
15:07	MP41894~SD1	5	
15:12	22222	1	
15:18	37 22 22	1	
15:24	MA26235~CCV4	1	
15:30	MA20235~CCB5	1	
15:35	ZZZZZZ	ž.	
15:41	222222	1	
	ZZZZZZ	1	
	ZZZZZZ	1	
	ZZZZZZ	ž.	
	ZZZZZZ		
	53 2 522		
	ZZZZZZ		
	ZZZZZZ		
	MA202354C@V5		
16:27	MA20235-CCB6	1	

Accutest Laboratories Instrument Runlog Inorganics Analyses

Login Number: J78054 Account: SETXF + Entact Houseon Project: Chevron, Perth Amboy


File ID: 1R121207Mi.DAT Analyss: ND

Parameters: Pb

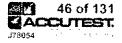
Date Analyzed: 12/12/07 Run ID: MA20235

· · · · · · ·		16/12/01	.wc +110 0.5 .	LLD	200.1	2MC40	OUT
Dun	TD:	MA20235					

Time	Sample Description	Dílution Factor	PS Recov	Commencs
16:33	MA25235-CRIB2	ĺ		
16:40	MA20235-ICSA2	1		
16:46	MA20235-ICSAB2	1		
16:56	MA20235-CCV6	1		
17:01	MA20235-CCB7	1		
17:07	22322Z	1		
17:12	ZZZZZZ	1		
17:18	ZZZZ%Z	1		
17:23	2 Z Z Z Z Z Z	1		
17:28	ZZZZZZ	1		
17:34	22ZZZZ	1		
17:39	ZZZZZZ	1		
17:44	22222	1		
17:50	321222	I		
17:55	MA20235-CCV7	1		
18:01	MA20235-CCB8	1		
18:06	MP41909-MB1	1		
18:12	MP41909-B1	1		
18:28	MP41909-MB1	1		
18:33	MP41909-LC1	1		
18:38	MP41909-S1	1		
18:44	MP41909-S2	1		
18:49	J77963-1	ī		(sample used for QC only; not part of login J78054)
18:55	MP41909-SD1	5		
19:00	ZZZ%ZZ	1		
19:05	MA20235-CCV8	1		
19:11	MA20235-CCB9	3		
19:16	232722	1		
19:22	ZZZZZZ	1		
19:27	ZZZZZZ	ì		
19:33	ZZZZZZ	1		
19:38	ZZZZZZ	1		
19:43	222222	1		

Accutest Laboratories Institument Runlog Inorganics Analyses

Login Number: J78054 Account: EHTXF - Entact Houston Project: Chevron, Perth Amboy


File FD: ER121207M1.DAT Analyst: ND

Analyst: ND Parameters: Pb

22:52 MP41882~S2 1

Date Analyzed: 12/12/07 Run ID: MA20235 Methods: EPA 200.7, SW846 60103

Time	Sample Description	Dilution Factor	PS Recov	Comments	_	
19:49	ZZZZZZ	1				
9:54	ZZZZZ2	1				
20:00	3222Z	1				
20:05	MA20235~CCV9	1				
20:11	MA20235~CCB10	1				
20:16	222222	1				
20:22	22223	1				
20:27	MP41873~MB2	1				
20:32	MP41873-LC1	ī				
20:38	3ZZ3ZZ	1				
20:43	22222	1				
20:48	ZZZZZZ	2				
20:54	2232ZZ	1				
20:59	22%22Z	ĩ				
21:05	MA20235~CCV10	1				
21:20	MA20Z35~CCBl1	1				
21:26	22ZZZZ	1				
21:31	ZZZZZZ	<u>.</u>				
21:37	Z2ZZZZ	1				
21:42	ZZZZZZ	1				
21:47	ZZZZZZ	3				
21:53	ZZZZZZ	1				
21:58	ZZZZZZ	1				
22:03	ZZZZZZ	1				
22:09	ZZZ%ZZ	1				
22:14	MA20235~CCV11	1				
22:20	MA20235~CCB12	1				
22:25	222232	1				
22:31	ZZZZZZ	5				
22:36	ZZZZZZ	5				

Accutest Laboratories Instrument Runlog Inorganics Analyses

Login Number: J78054 Account: SSTXF - Entact Houston Project: Chevron, Perth Amboy

			-	rojetc. chevi	ony retun.	niibų y	
Anal	e ID: IR121207M1. lyst: ND ameters: Pb	DAT	Ι	Date Analyzed: Run 1D:	12/12/07 MA20235	Methods: EPA 200.7, SW84	6 6010B
ime	Sample Description	Dilution Factor	PD Recov	Comments	·		
2:58	22222	1		****			
3:03	MP41882-SD1	5					
3:09	MP41826-M23	5					
3:14	MA20235-CCV12	1					
3:20	MA20235-CCB13	1					
3:51	MA20235-CRIB3	1					
3:56	MA20235-ICSA3	1					
0:02	MA20235-ICDAB3	1					
0:07	MA20235-CCV13	1					
0:13	MA20235-CCB14	1					
0:19	MP41826-MB3	1					
0:24	MP41826-LC2	1					
0:29	J78054-1A	1					
2:35	J78054-2A	1					
0:40	J78054-3A	1					
agt r	J78054-4A eportable sample MP41906-MB1	1 /prep for 1	job J78	054			
:56	MP41906-B1	1					
:01	MP41906-S1	1					
:07	MP41906-S2	1					
:12	MA20235-CCV14	1					
:18	MA20225-CCB15	1					
:23	J7772 2- 3R	1		(sample use	d for QC or	ly; not part of login J78054)
						-	

----->

01:29 MP41906-SD1
01:34 ZZZZZZ
01:39 ZZZZZZ
01:45 ZZZZZZ
01:50 ZZZZZZ

02:01 MP41904-MB1 02:06 MP41904-B1

02:12 MA20235-CCV15 1
02:17 MA20235-CCB16 1

1

2 5

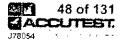
Accutest Laboratories Instrument Runlog Inorganics Analyses

Login Number: J78054 Account: EHTXF - Entact Rowston Project: Chevron, Perth Amboy

Analy	ID: TR121207M1. yst: ND neters: Pb	DAT		Date Analyzed: 12/12/07 Methods: EPA 200.7, SW846 6010B Run ID: MA20235
Time	Sample Description	Dílution Factor		of Comments
2:23	MP41904-51	1		
2:28	MP41904-S2	1		
2:34	J78053-1	1		(sample used for QC only; not part of login J78254)
2:39	MP41904-SD1	5		
2:45	22222	1		
2:50	MP41880-PS1	1		
2:55	ZZZZZZ	1		
3:01	MP41895-PS1	2		
3:06	ZZZZZZ	1		
3:12	MA20235-CCV16	1		
3:17	MAZ0235-CCB17	1		
7:34	MA2J235-CRIB4	1		
7:40	MA20235-175A4	1		
7:45	MAZ0235-ICSAB4	1		
7:51	MA20235-CCV17	1		
ast re	MA20235-CCB10 portable CCB fo ZZZZZZ	1 ⊑ job <i>5</i> 780 2	54	
8:11	ZZZZZZ	1		
8:16	ZZZZZZ	1		
B:21	ZZZZZZ	1		
3:27	Z2ZZZZ	5		
3:33	ZZZZZZ	1		
3:40	MP41893-S1	1		

Refer to raw data for calibration curve and standards.

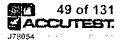
1


1

08:45 MP41893-S2 08:50 MP41893-SDI 5 08:56 MA20235-CCV18 1 09:01 MA20235-CCB19 2 09:11 MP41892-B1

09:15 222222

09:20 MA20235-1C5A5 1 09:25 MA20235-ICSAB5 1 09:31 MA20235-CCV19 1 09:36 MAZ0235-CCB20 1


Login Number: J78054 Account: EHTXF - Entact Houston Project: Chevron, Perth Amboy

File ID: IR121207Ml.DAT Analyst: ND

Parameters: Pb

Date Analyzed: 12/12/07 Run ID: MA20235

Para	ameters: Pb	··-··
Time	Sample Description	Istd#1
09:43	MA20235-STD3	495353 R
09:48	MA20235~STD2	493947
09:54	MA20235~STD3	495779
09:59	MA20235~STD4	497449
10:05	MA20235-ST05	495961
10:10	MA20235-STD6	493022
10:16	MA20235-SED7	492735
10:21	MA20235~STD8	494706
30:27	MA20235~STD9	488623
11:03	MA20235~STD10	495152
11:10	MA20235~HSTD1	483837
31:16	MA20235~CRIB1	493552
11:21	MA20235-CRIA1	493623
14:27	MA20235~1CV1	495732
11:32	MAZ0235-ICBI	502127
II;38	MA20235-3CCV1	493595
21:44	MA20235-CCB3	496601
11:54	MA20235-ICSA1	470226
12:00	MAZ0235-ICSAB1	471649
12:06	MA20235-CCVI	504139
12:11	MA20235~CCB2	496168
12:32	222222	508630
12:38	ZZZZZZ	519454
12:44	ZZZZZZ	541938
12:48	J77850-1	536283
12:53	ZZZZZZ	507843
12:58	ZZZZZZ	496810
13:03	322222	495243
13:09	ZZZZZZ	492953
13:13	MA20235-CCV2	4 93963
13:19	MA20235-CCB3	496920
73:24	222232	496972
13:30	222222	507677

Login Number: J78054 Account: ESTXF - Entact Houston Project: Chevron, Perth Amboy

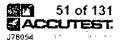
File ID: IR121207M1.DAT

Analyst: ND Parameters: Pb

Date Analyzed: 12/12/07 Methods: EPA 200.7, SW846 6010B

Run	ID:	MA20235

me	Sample Description	īsta#1	
:35	ZZZZZZ	495860	
:41	3232ZZ	£14405	
:46	ZZZZZZ	506010	
:51	232222	498811	
:57	MF41872-SI	496975	
:62	MP41872-S2	493460	
:07	ZZZZZZ	505060	
:13	ZZZZZZ	513135	
:18	MA20235-CCV3	496450	
24	MA20235+CCB4	494760	
:29	322222	512221	
: 35	22222	514485	
:40	ZZZZZZ	502781	
45	22222	495263	
51	MP41894~S1	562377	
56	MP41894-S2	551753	
02	J77894-14	563906	
07	MP41894-SD1	514239	
12	ZZZZZZ	522019	
18	23222Z	525881	
24	MA20235-CCV4	496331	
30	MA20235+CCB5	499489	
35	ZZZZZZ	486738	
41	22222	553643	
46	ZZZZZZ	540678	
52	ZZZZZZ	541897	
57	ZZZZZZ	565213	
02	232727	567897	
97	322223	556788	
12	SZZZZC	551969	
18	ZZZZZZ	571850	
22	MA20235-CCV5	502390	
27	MA20235+CCR6	500256	


Login Number: J78054 Account: ERTXF - Entact Houston Project: Chevron, Perth Amboy

File ID: IR121207M1.DAT Analyst: ND

Parameters: Pb

Date Analyzed: 12/12/07 Run 1D: MA20235

Time	Sample Description	Iåta∤1
16:33	MAZ0Z35-CRIB2	5 103367
16:40	MA20235-ICJA2	481069
16:46	MA20235-ICEAB2	47974Ż
16:56	MA20235-CCV6	497926
17:01	MA20235-CCB7	501809
17:07	ZZZZZZ	571603
17:12	3ZZ2ZZ	574197
17:18	222222	558189
17:23	ZZZZZZ	551820
17:28	ZZZZZZ	547329
17:34	22 ZZ ZZ	553074
17:39	ZZZZZZ	552468
17:44	322222	558240
17:50	ZZZZZZ	561638
17:55	MA20235-CCV7	438458
18:01	MA26235-CCB8	499175
18:06	MP41909-MB1	500587
18:12	MP41909-B1	503594
18:28	MP41909-MB1	504525
18:33	MP41909-1C1	533504
18:38	MP41909-S1	534347
18:44	MP41909-S2	534776
18:49	J77963-1	536065
18:55	MP41909-SD1	511070
19:00	T7ZZZZZ	539717
19:05	MA20235~CCV9	500119
19:11	MAZ0235-CCB9	500991
	Z2ZZZZ	537872
19:22	332332	538582
19:27	ZZZZZZ	523781
19:33	Z32ZZZ	530971
		587648
		544047
		- * "

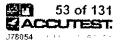
Login Number: 378054 Account: EHTXF - Entact Houston Project: Chevson, Perth Amboy

File ID: IR121207M1.DAT Analyst: ND

Analyst: ND Parameters: Pb Date Analyzed: 12/12/07 Fun ID: MAZ0235 Methods: EPA 200.7, SW846 6010B

. Th. Marchook Mechods, MEM 200,7, Swd40 DOID

Time	Sample Description	Istd#l		
19:49	222222	530947	 	
19:54	ZZZZZZ	535856		
20:00	222222	529358		
20:05	MA20235-CCV9	510827		
20:11	MA20235-CCB10	505302		
20:16	222222	539452		
20:22	222272	536940		
Z0:27	MP41873-MB2	490639		
20:32	MP41873-LC1	506095		
20:38	222222	494593		
20:43	ZZZZZZ	492303		
20:48	222222	515651		
20:54	222222	506678		
20:59	22ZZ3Z	517902		
21:05	MAZ0235-CCV10	508081		
21:20	MA20235~CCBII	515678		
21:26	ZZZZZZ	499754		
21:31	ZZZZZZ	504683		
21:37	22222	495828		
21:42	22222	502072		
22:47	ZZZZZZ	501085		
21:53	ZZZZZZ	500238		
21:58	ZZZZZZ	501648		
22:03	ZZZ727	490795		
22:09	22222	504175		
22:14	MA20235-JCV11	507258		
27:20	MA20235-CCB12	504642		
	Z32ZZZ	512240		
22:31	Z2ZZZZ	507988		
22:36	ZZZ <i>Z</i> ZZ	508869		
22:42	ZZZZZZ	511673		
22:47	MP41882-\$1	549466		
22:52	MP43882-S2	547957		

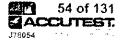

Login Number: 378954 Account: EHTXF - Entact Houston Project: Theyron, Perth Amboy

file 1D: TR121207Ml.DAT Analyst: ND

Parameters: Pb

Date Analyzed: 12/12/07 Run ID: MA20235

Time	5ample Description	1std#1
22:58	ZZZZZZ	560667
23:03	MP41882-SD1	524245
23:09	MP41826-MB3	496229
23:14	MA20235-CCV12	507357
23:20	MA20235-CCB13	505839
23:51	MA20235-CRIB3	503273
23:56	MA20235-1CSA3	483696
00:02	MA20235-IC5AB3	483647
00:67	MA20235-CCV13	505810
00:13	MA20235-CCB14	506344
00:19	14P41826-MB3	491387
00:24	MP41826-LC2	507227
00:29	J78054-1A	497640
00:35	J?8054-2A	493958
00:40	578054-3A	499812
00:45	J78054-4A	489601
00:51	MP4;906-MB1	511722
00:56	14P41906-B1	515990
01:01	MP41906-S1	508082
01:07	MP41906-S2	509450
01:12	MA20235-CCV14	507136
01:18	MA20235-CCB15	505909
01:23	J77722-3R	510127
01:29	MP41906-SD1	507395
01:34	ZZZZZZ	493381
01:39	ZZ2.ZZZ	499990
01:45	ZZZZZZ	490154
01:50	222222	489901
01:56	ZZZZZ	495484
02:01	MP41904-MB1	519644
02:06	MP41904-B1	518910
02:12	MA20235-CCV15	507395
02:17	MA20235-CCB16	508153


Login Number: J780E4 Account: EHTXF - Entact Houston Project: Chevron, Perth Amboy

File 1D: 1R121207M1.DAT Analyst: ND

bate Analyzed: 12/12/07 Run 1D: MA20235

Methods: EPA 200.7, SW846 6010B

	lyst: ND ameters: Pb	Run 1D: MA20235
Time	Sample Description	īstd#l
02:23	MP41904-Sl	489112
02:28	MP41904-S2	486614
02:34	J78053-1	489581
02:39	MP41904-SD1	506204
02:45	222322	506196
02:50	MP41880-PS1	531669
02:55	ZZZZZZ	506583
03:01	MP41895-PS1	562292
03:06	ZZZZZZ	525377
03:12	MA20235-CCV16	502630 .
03:17	MA20235-CCB17	505813
07:34	MA20235-CR1B4	511612
07:40	MA20235-1CSA4	482253
07:45	MA20235-ICSAE1	482304
07:51	MA20225-CCV17	502725
07:57	MA20235-CCB18	499366
08:04	ZZZZZZ	551629
08:11	ZZZZZZ	592939
08:16	ZZZZZZ	189838
08:21	232323	521997
08:27	22222	522378
08:33	ZZZZZZ	512618
08:40	MP41893-S1	535148
08:45	MP41893-S2	538328
08:50	MP41893-SD1	514188
08:56	MA20235-CCV18	500626
09:01	MA20235-CCB19	512069
09:11	MP41893-B1	508993
09:15	ZZZZZZ	511960
09:20	MA20235-ICSA5	480735
09:25	MA20235-1CSAB5	482731
09:31	MA20235-CCV19	502309
09:36	MA20235-CCB20	503961

R = Reference for ISTD limits. ! = Ourside limits.

Login Number: 578054 Account: EHTXF - Entact Houston Project: Chevron, Perth Amboy

File ID: IR121207M1.DAT

Analyst: ND Parameters: Pb Date Analyzed: 12/12/07 Run ID: MA20235

Methods: EPA 200.7, SW846 6010B

Sample Time Description Istd#1

LEGEND:

Istd# Parameter Fstd#1 Yttrium

Limits 60-125 %

BLANK RESULTS SUMMARY Part 1 - Initial and Continuing Calibration Blanks

Login Number: J78054 Account: EHTXF - Entact Houston Project: Chevron, Perth Amboy

File ID: $\mbox{IR321207M1,DAT}$ QC Limits: result < RL

Date Analyzed: 12/12/07 Run ID: MA20235 Methods: EFA 100.7, SW846 6010B Units: ug/l

Time: Sample ID:			11:32 ICB1		11:44 CCB1		12:11 CĆB2		13:19	
Metal	RL	lpr.	raw rcm1	final	cem	fina)	CCB2 raw	final	CCB3 raw	final
Aluminum	200	19	anr							
Antimony	6.0	5.1	anr							
Arsenic	8.0	3.1	anr							
Barium	290	. 4	anr							
Beryllıum	1.0	.1	anr							
Cadmium	4.0	.8	anr							
Ćalcium	5000	22	anr							
Chromium	10	1.1	anr							
Cobalt	50	1.1	anr							
Copper	25	3.4	anr							
Iron	100	55	anr							
Lead	5.0	3.5	0,33	<3.0	1.9	<3.0	0.45	<3.0	2.3	<20
Magnesium	5000	7.6	anr							
Manganese	15	.6	anr							
Nickel	40	2.3	anr							
Potassium	10000	61	anr							
Selenium	10	3.5	anr							
Silver	10	2.3	anr							
Sodium	10000	450	anr							
Thalligm	10	7.7	anr							
Vanadíum	50	2.7	ann							
Zinc	20	1.4	anr							

SUANK RESULTS SUMMARY Part 1 \sim Ifitial and Continuing Calibration Slanks

Login Number: J78054 Accounc: EHTXF ~ Encact Houston Project: Chevron, Perth Amboy

File ID: IR121207M1.DAT QC Limits: result < FL

Date Analyred: 12/12/07 Run IS: MA20235

Methods: EPA 200.7, sw846 6010B Units: ug/l

			- · · · · · · · · · · · · · · · · · · ·	
Tìme:	14;24	15:30	16:27	
ample ID:	CCB4	CCB5	CCB6	

Time: Sample ID: Metal	RL.	12r	14:Z4 CCB4 raw	final	15:30 CCB5 raw	fånal	16:27 CCB6 raw	final	17:01 CC57 raw	fána3
Aluminom	200	Č9	anr							
Antimony	6.0	5.1	anr							
Arsenie	8.0	3.3	ane							
Barium	200	. 4	ane							
Beryllium	1.0	. 1	anr							
Cadmium	4.0	.8	anr							
Calcium	5000	22	anr							
Chromium	10	1.1	anr							
Cobalt	50	1.1	anr							
Copper	25	3.4	ar.r							
Ison	100	55	anr							
Lead	3.0	3.5	0.13	<20	0.31	< 20	0.78	<20	0.084	<20
Magnesium	5000	7.6	anr							
Manganese	15	.6	anr							
Nickel	40	2,3	anr							
Potassium	10000	61	anr							
5el€nium	10	3.5	anr							
Silver	10	2.3	anr							
Sodeum	10000	450	anr							
Thalliym	10	7.7	anr							
Varadium	50	ż.7	anr							
Zinc	20	1.4	anr							

BLANK RESULTS SUMMARY Part 1 - Snitial and Sentinning Calibration Blanks

Login Number: J780S4 Ascoung: EHTXF - Engact Houston Project: Chevron, Parth Amboy

Fale ID: ER121207M1.DAT QC Limits: result < PL

Date Analyzed: 12/12/07 Run ID: MA20235 Methods: EPA 200.7, SW846 6010B

Units: ug/l

me تناسط Sample ID	:		18:01 CCB8		19:11 Cab9		20:11 CCB10		21:20 CCB31	
Metal	RS.	IDT	Iaw	final	್ಷೆಪೆ	final	raw	final	raw	final
Aluminum	200	29	ar,r							
Angimony	6.0	5.1	anr							
Arsenic	8.0	3.1	anr							
Sarium	200	, 4	anr							
Beryllium	1.0	.1	anı							
Cadmium	4.0	. 8	ang							
Calcium	5000	22	anr							
Chromium	10	1.1	anr							
Cobalt	50	1.1	anr							
opper	25	3.4	anr							
zon	100	<u>5</u> 5	anr							
ead	3.0	3.5	2.3	<20	1.8	<20	0,29	<20	0,26	<20
lagnesium	5000	7.6	anr							
langanese	15	.€	anr							
ıckel	40	2.3	anr							
ctassium	20000	61	anr							
elenium	10	3,5	anr							
ilver	10	2.3	anr							
ogrinu	10000	450	anr							
hallíum	10	?,7	anr							
anadıum	50	2.7	anr							
inc	20	2.4	anr							

5.2.2

BLANK RESULTS SUMMARY Part 1 - Initial and Continuing Calibration Blanks

Logis Number: 578054 Account: EHTXF - Entact Houston Project: Chevron, Ferth Amboy

File ID: 1R121207M1.DAT QC Limits: result < RL Dare Analyzed: 12/12/07 Run 1D: MA20235 Methods: EPA 200.7, SW846 6010B

Units: ug/l

Time: Sample ID:	Riv	1DL	22:20 CCB12 raw	final	23:20 ¢¢⊞13 ra₩	final	00:13 CCB14 raw	final	01:18 CCB15 raw	final
Metal				21.101	1211					
Aluminum	200	19	anr							
Antimony	6.0	5.1	anı							
Arsenic	8.0	3.1	anr							
Barıum	200	. 4	altr							
Beryllıum	1,0	.1	anr							
Cadmium	4.0	.8	anr							
Calcium	5000	22	anr							
Chromium	10	1.1	anr							
Cobalt	50	1,1	anr							
Copper	25	3.4	ânr							
Iron	100	5.5	anr							
Lead	3.0	3.5	0.23	<2€	0.69	<20	1.7	<20	1.2	<20
Magnesium	5000	7.6	anr							
Manganese	35	.6	anr							
Naokel	40	2.3	anı							
Potassium	3 0000	61	anr							
Selenium	10	3.5	anr							
Silver	10	2.3	anr							
Sodium	10000	450	anr							
Thallium	10	7,7	anı							
Vanadium	50	2.7	anr							
Zinc	20	1.4	anr							

BLANK RESULTS SUMMARY Part 1 - Initial and Continuing Calibration Blanks

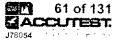
Login Number: 378054 Account: EHTXF - Entact Houston Project: Shevron, Perth Amboy

File ID: IR121207M1.DAT QC Limits: result < RL

Date Analyzed: 12/12/07 Run 10: MA20235

Methods: EPA 200.7, SW846 6010B Units: ug/l

Time: Sample ID:			02:17 CCB16		03:17 CCB17		07:57 CCB18		
Metal	RL	71)L	raw	final	raw	final	raw	final	
Aluminum	200	19	anr						
Antimony	6.0	5.1	anr						
Arsenic	0.8	3.1	anr						
Barıum	200	. 4	anr						
Beryllium	1.0	.1	anr						
Cadmium	4.0	.0	anr						
Calcium	5000	22	anr						
Chromium	3.0	1.1	anr						
Cobalt	50	1.1	anr						
Copper	25	3.4	anr						
Iron	100	55	anr						
Lead	3.0	3.5	-0.36	<20	0.94	<20	0.47	<20	
Magnesium	5000	7.6	ans						
Manganese	15	. 6	anr						
Nickel	40	2.3	anr						
Potassium	10000	61	20,6						
Selenium	10	3.5	anr						
Silver	10	2.3	anr						
Sodium	10000	450	anr						
Thallium	10	7.7	anr						
Vanadıum	50	2.7	anr						
Zinc	20	1.4	anr						


CALIBRATION CHECK STANDARDS SUMMARY Instal and Contanging Calibration Checks

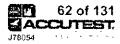
Login Number: 578054 Account: EMTXF - Entact Houston Project: Chevron, Perth Amboy

File ID: IRI2II07M1.DAT QC Limits: 95 to 105 % Recovery

Date Analyzed: 12/12/07 Run IS: MA20235 Methods: EPA 200.7, SW846 6016B Units: ug/l

Time: Sample ID: Metal		I1:27 ICV1 Results	% Rec	CCV True	12:06 CCV1 Resulte	₹ Rec	CCV True	13:13 CCV2 Results	% Rec
Aluminim	anı								········
Antimony	anr								
Assenio	ans								
Baríym	anr								
Beryllium	anr								
Cadmium	anr								
Valerum	anr								
Chromium	anr								
Cobalt	anr								
Coppes	anr								
Iron	an <i>r</i>								
Lead	1000	7000	100.0	2005	1930	96.5	2000	1980	99.0
Magnesium	anı								
Manganese	anr								
Nickel	anr								
Potassium	ans								
Seleniom	anr								
Silver	anr								
Sodium	anr								
Thallium	anr								
Vanadium	ans								
Zinc	anr								

CALIBRATION CHECK STANDARDS SUMMARY Initial and Continuing Calibration Checks


Login Number: J78054 Account: EHTXF - Entact Houston Project: Chevron, Perth Amboy

File ID: IR121207MI.DAT QC Limits: 95 to 105 % Recovery

Run ID

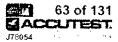
Date Analyzed: 12/12/07 Methods: EPA 200.7, SW846 6019B

Time: 5ample ID: Metal	CCV True	14:18 CCV3 Results	€ Rec	CCV True	15:24 CCV4 Results	% Rec	CCV True	16:22 CCV5 Results	۶ Rec
Aluminum	anr								
Antimony	anr								
Arsenic	anr								
Barium	anı								
Beryllium	anr								
Cadmium	anr								
Calcium	anr								
Chromium	anr								
Cobalt	anr								
Copper	anr								
Iron	anr								
Lead	2000	1970	98.5	2400	1970	98.5	2000	1990	99.5
Magnesium	anı								
Manganese	ahr								
Nickel	anr								
Potassium	anr								
Selenium	anr								
Silver	anr								
Sodium	gut								
Thallium	anr								
/anadium	ānr								
Zinc	anr								
(*) Outside of	QC limít:	s							

CALIBRATION CHECK STANDARDS SUMMARY Initial and Contanuing Calibration Checks

Login Number: J78054 Account: EHTXF - Entact Houston Project: Chevron, Perth Amboy

File gD: IR121207M1.DAT QC Jimits: 95 to 105 % Regovery Date Analyzed: 12/12/07 Run ID: MA20235

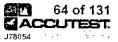

Methods: SPA 200.7, SN846 6010B Units: ug/1

Time: Sample ID: Metal	CCV True	16:56 CCV6 Results	% Rec	CCV True	17:55 CCV7 Resulis	% Rec	CCV Trug	19:05 CCV8 Results	₹ Rec
Aluminum	ānr								
Antimony	anr								
Arsenic	anr								
Sarium	anr								
Beryllium	anr								
Cadmium	anr								
Calcium	anr								
Chromium	anr								
Cobalt	anr								
Copper	arr								
lron	anr								
Lead	2000	1970	98.5	2000	1950	97.5	2000	1980	99.0
Magnes14m	anr								
Manganege	anr								
Nickel	anr								
Potassium	ānr								
Selentum	anr								
Silver	anr								
Sodium	anr								
Thallium	anı								
Vanadium	anr								

^(*) Outside of QC limits (anr) Analyte not requested

anr

Zinc


Logia Number: J78054 Account: EHTXF - Entact Houston Project: Chevron, Perth Amboy

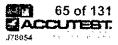
File ID: IR12I2O7M1.DAT QC Limits: 95 to 105 % Recovery

Date Analyzed: 12/12/07 Run ID: MA20235 Methods: EPA 200.7, SW846 6610B Units: 4g/1

Time: Sample ID: Metal	CCV True	20:05 CCV9 Results	₹ Rec	CCV True	2I:05 CCV10 Results	f Rec	CCV True	22:14 CCV11 Results	% Rec
Aluminum	anr								
Antimony	anr								
Arsenic	ತನೆಕ								
Barıum	anr								
Beryllium	anr								
Cadmium	anr								
Calcium	anr								
Chromium	ānī								
Cobalr	aLr								
Copper	anr								
Iran	anr								
Lead	2000	1960	98.0	2000	1950	99.5	2000	1990	99.5
Maghesium	anr								
Manganese	ans								
Nickel	anr								
Potassium	anr								
Selenium	anr								
Silver	anr								
Sodium	anr								
Thall:um	anı								
Fanadium	anr								
Zinc	ahr								

(*) Outside of QC limits
(anr) Analyte not requested

Login Number: J78854 Account: EHTXF - Entact Houston Project: Chevron, Perth Amboy


File ID: IRI21207M1.DAT QC Limits: 95 to 105 % Recovery

Date Analyzed: 12/12/07 Run ID: MAZ0235

Methods: EPA 200.7, SW846 6010B Units: ug/l

Time: Sample ID: Metal	CCV True	23:14 CCV12 Results	% ⊼ec	CCV True	00:07 CCVl3 Results	% Rec	CCV True	0J:12 CCV14 Results	ቴ Rec
Aluminum	ann								
Antimony	anr								
Arsenic	anr								
Barıum	anr								
Beryllıum	ānr								
Cadmium	anr								
Calcium	anr								
Chromium	anr								
Cobalt	anr								
Copper	anr								
Iron	anr								
Lead	2000	1990	99.5	2000	1980	99.0	2000	1980	99.0
Magnesium	anr								
Manganese	anr								
Nickel	anr								
Potastium	anr								
Selenium	anr								
Silver	anr								
Sodium	anr								
Thallium	anr								
Vanadium	anr								
Zinc	anr								

(*) Outside of QC limits (anr) Analyte not requested

Login Number: J78054 Account: EHTXF - Entact Houston Project: Chevron, Pesth Amboy

File ID: SR121207M1.DAT QC Limits: 95 to 305 % Recovery

Date Analyzed: 12/12/07 Run ID: MA20235 Methods: EPA 200.7, SW846 6010B Unitg: ug/l

20 11m1cb. 35 co 305 c Necosety			Kun ID: MA20235			Ouita: ma/l			
Time: Sample ID: Metal	CCV True	02:12 CCV15 Results	ኑ Rec	CCV True	03:12 CCV16 Results	t Rec	CCV True	07:51 CCV17 Results	₹ Rec
Mונות במשב Aluma	anr								
Antimony	ānī								
Arsenic	anr								
Barium	anr								
Beryllium	anr								
Cadmium	anr								
Calcium	anr								
Chromium	anr								
Cobalt	anr								
Copper	anr								
Iron	anr								
Lead	2000	2020	101.0	2000	2620	101.0	2000	2030	102.5
Magnesium	anz								
Manganese	anr								
Nickel	anr								
Potassium	anr								
Selenium	anr								
Silver	anr								
Sodium	ang								
Thallíum	anr								
Vanadium	anr								

(*) Outside of QC limits (anr) Analyte not requested

anr

HIGH STANDARD CHECK SUMMARY

Login Number: J78054 Account: EHTXF - Entact Housica Project: Chevron, Perth Amboy

File ID: IR121207M1.DAT QC Limits: 95 to 105 % Recovery

Date Analyzed: 12/12/07 Run ID: MA20235

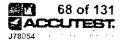
Methods: EPA 200.7, SW846 6010B

Units: vg/1

Time: Sample ID: Metal	HSTD True	11:10 HSTDi Results	% Rec
Aluminum	anr	····	
Antimony	ânr		
Arsenic	anr		
Barıum	ans		
Beryllium	ānr		
Cadmium	anr		
Calcium	anr		
Chromium	anr		
Cobalt	anr		
Copper	ānr		
Iron	anr		
Lead	4000	3920	98.0
Magnesium	anı		
Manganese	anr		
Nickel	anr		
Potassjum	alır		
Selenium	anr		
Silver	anr		
	anr		
Thallium	sui		
Vanadium	anr		
Zinc	anr		

(*) Outside of QC limits (anr) Analyre not requested

LOW CALIBRATION CHECK STANDARDS SUMMARY


Login Number: 378054 Account: EHTXF - Entact Houston Project: Chevron, Perth Amboy

File ID: IR121207M1.SAT QC Limits: 50 to 150 % Recovery Date Analyzed: 12/12/07 Run ID: MA20235

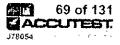
Methods: EPA 200.7, SW846 6010B

Units: ug/l

Time: Sample ID: Metal	CRī True	CRIA True	11:21 CRIA1 Results	ቴ Rec
Aluminum				
Antimony	120	10		
Arsenic	20	20		
Barium	400			
Beryllium	10	2.0	an <i>r</i>	
Cadmium	10			
Calcium				
Chromium	20			
Cobalt	100			
Copper	50			
Iron				
bead	6.0	6.0		
Magnesium				
Manganese	30			
Nickel	80			
Potaseium				
Selenium	10	10		
Silver	20			
Sodíum				
Thallíum	20	20		
Vanadium	100			
Zinc	40			
(*) Outside of (anr) Analyte				

1N1T1AL LOW CALIBRATION CHECK STANDARD SUMMARY

Login Number: 578054 Account: EHTXF - Entact Houston Project: Chevron, Perth Amboy


Fale 1D: 1R121207Mi.DAT QC Limits: 50 to 150 % Recovery

Date Analyzed: 12/12/07 Run 1D: MA20235 Methods: EPA 200.7, SW846 60103

Units: ug/l

Time: Sample 19: Metal	CRIB True	11:16 CRIB1 Results	% Rec	16:33 CR1B2 Results	% Rec	23:51 CRIB3 Results	ዓ Rec	07:34 CR1B4 Results	ર Rec
Aluminum	400		-						
Antimony	12								
Arsenic	16								
Barlum	400								
Beryllium	2.0								
Cadmium	8.0								
Calcium	5000								
Chromium	20								
Cobalt	100								
Copper	50								
Iron	200								
Lead	6.0	0.8	133.3	6.7	131.7	7.4	123.3	5,9	98.3
Magnesium	5000								
Manganese	30								
Nickel	80								
Potassium	10000								
Selenium	20								
Silver	20								
Sodíum	70000								
Thallium	20								
Varadium	100								
2inc	40								

^(*) Cutside of QC limits (anr) Analyte not requested

INTERFERING ELEMENT CHECK STANDARDS SUMMARY Part 1 - 1CSA and ICSAB Standards

Login Number: 378054 Account: EPTXF - Entact Houston Project: Chebron, Perth Amboy

File %5: IR:21207M1.DAT QC Limits: &0 to 120 % Recovery

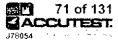
Date Analyzed: 12/12/07 Run ID: MA20235

Methods: EPA 200.7, SW846 6010B Units: ug/1

Time: Sample ID: Metal	10SA True	ICSAB True	11:54 ICSA1 Results	६ Rec	12:00 ICSAB1 Results	% Rec	I6:40 ICSA2 Results	l Rec	16: 4 6 ICSAB2 Results	₹ Rec
Aluminum	500000	500000	531000	106.2	547000	109.4	529000	105.8	548000	109.6
Antimony		1000	9.5		1010	101.0	1.8		1010	101.0
Arsenic		1000	-2.6		991	99.1	-0.43		1010	101.0
Barium		500	-0.45		534	106.8	-0.27		530	106.0
Beryllium		500	0.25		488	97.6	0.:7		494	98.8
Cadmıum		1000	1.7		983	98.3	2.1		990	99.0
Calcium	400000	400000	369000	92.3	369000	92.3	368000	92.0	371000	92.8
Chromium		500	-1.6		489	97.8	-2.2		494	98.8
Cobalt		500	-0,40		471	94.2	-1.5		476	95,2
Copper		500	-5.2		514	102.8	-4.9		516	103.2
îron	200000	200000	196000	98.0	200000	100.0	196000	98.0	202000	101.0
Lead		1000	3.9		974	97.4	0.32		982	98,2
Magnesium	500000	590000	538000	107.6	537000	107.4	543000	108.6	546000	109.2
Manganese		500	-6.4		486	97.2	-6.0		490	98.9
Nickel		1000	2.9		940	94.0	2.1		943	94.3
Potass:um			281		278		232		332	
Selenium		1000	-6.1		1900	100.0	-11		1020	102.0
Silver		1000	-0.84		1120	112.0	-1.6		1130	113.D
Sodium			325		235		310		282	
Thallium		1000	5.9		935	93.5	-8.2		946	94.6
Vanadium		500	-0.16		503	100.6	-0.43		506	101.2
Zitic		1000	1.1		1040	104.0	2.9		1050	105.0

(*) Outside of QC limits (anr) Analyte not requested

INTERFERING ELEMENT CHECK STANDARDS JUMMARY Part 1 - ICSA and ICSAB Standards


Login Number: J78054 Account: EHTXF - Entact Houston Project: Chevron, Perth Amboy

File ID: 1R121207M1,DAT QC Limits: 80 to 120 % Recovery Date Analyted: 12/12/07 Run ID: MAZ0235

Methods: EPA 200.7, SW846 6010B Units: ug/1

Time: Sample 1D: Metal	1CSA True	ICSAB True	23;56 ICSA3 Results	% Rec	00:02 1CSAB3 Results	≯ Rec	07:40 1CSA4 Results	₹ Rec	07:45 ICSAB4 Results	% Rec
Aluminum	500000	500000	524000	104.8	541000	108.2	532000	106.4	549000	109.8
Antimony		7000	8.8		1010	101.0	7.7		1010	101.0
Arsenic		1600	-2.7		1026	102.0	-5.9		1020	102.0
Barıum		500	-0.43		523	104.6	-0.43		530	106.0
Beryllium		500	0.12		438	97.6	0.12		496	99.2
Cadmium		1060	1.7		979	97.9	1,4		991	99.1
Calcium	400000	400000	366000	91.5	367000	91.8	373000	93.3	372000	92.3
Chromium		500	-1.3		487	97.4	-1.3		492	98.4
Cobalt		500	-1.3		468	93.6	-0.87		475	95.0
Copper		500	-5.1		521	102.2	-5.7		516	103.2
Iron	290000	200000	194000	97.0	199000	99.5	198000	99.0	202000	101,0
Lead		1800	3.2		972	97.2	5.1		985	98.5
Magnesium	500000	500000	539050	107.8	539000	107.8	547000	159.4	546000	109.2
Manganese		500	-6.0		483	96.6	-6.5		489	97.8
Nicke1		1000	3.4		934	93.4	2.0		945	94.5
Polassium			279		285		273		265	
Selenium		1000	-9.2		1010	101.0	-12		1020	102.0
Silver		1000	-0.47		1110	111.0	0.25		1120	112.0
Sodium			472		223		382		50.5	
Thallium		1000	0.97		937	93.7	-5.7		944	94.4
Vanadium		500	-0.17		499	99.8	-0,39		504	100.8
Zinc		1000	2.1		1040	104.0	0.69		105C	105.0

(*) Dutside of QC limits (anr) Analyte not requested

Accutest Laboratories Instrument Runlog Inorganics Analyses

Login Number: J78054 Account: ESTXS - Entact Houston Project: Chevron, Perth Amboy

File ID: SA122107ML.ICP

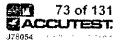
Analyst: RP Parameters: Pb Date Analyzed: 12/21/07 Run 1D: MA20282

Methods: EPA 200.7, SW846 6010B

Time	Sample Description	Dilution PS Factor Recov	Comments
14:32	MA20282-STD1	1	STDA
14:39	MA20282-STD2	1	STDB
34:4 6	MA20282-CCV1	1	
14:53	MA20282-CCB1	1	
15:03	MA20282-STD3	1	STDB
15:12	MA20282-CCV2	1	
15:21	MA20282-HST01	1	
15:29	MA20282-CRYB1	1	
15:35	MA20282-CRIA1	1	
15:44	MA20282~ICV1	1	
15:55	MA20282-1CB1	1	
i6:04	MA20282~100V1	1	
16:28	MA20282-CCB2	1	
16:28	MA20282-ICSA1	1	
16:37	MA20282~1CSAB1	1	
Ն6:46	MA20282-CCV3	ટ	
16:52	MA20282-CCB3	1	
16:59	MP42017∨MB1	1	
17:06	MP42017-LC1	1	
17:13	MP42017-S1	1	
17:20	MP42017~S2	2	
17:27	J78823-11	1	(sample used for QC only; not part of login J78054)
17:34	MP42017~SD1	5	
17:41	ZZZZZZ	ī	
17:48	ZZZZZZ	1	
17:55	MA20282+CCV4	1	
18:02	MA20282-CCB4	1	
18:09	ZZZZ%Z	1	
18:16	Z2ZZZZ	ı	
18:23	ZZZ2Z%	1	
18:30	ZZZZZZ	1	
18:37	Z2ZZZZ	1	
18:44	Z32ZZZ	1	

Accurest Laboratoties Instrument Runlog Unorganics Analyses

Login Number: £78054 Account: EHTXF - Entact Houston Project: Chevion, Perth Amboy


File ID: SAI22107M1.ICP

Analyst: RP Farametets: Pb

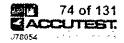
22:33 MA20282-CCB8 1

Date Analyzed: 12/21/07 Run ID: MA20282 Methods: EPA 200.7, SW846 6010B

	amete:s: Pb		Run ID: MAZUZ8Z
Time	Sample Description	Dilution PS Factor Recov	Comments
18:51	222222	1	
18:58	222222	1	
29:05	MA20282-CCV5	7	
19:12	MA20282-CCB5	1	
19:18	MA20282-CRIB2	1	
19:25	MA20282-CRIA2	2	
19:32	MA20282-ICSA2	1	
19:39	MA20282-ICSAB2	1	
19:47	MA20282-CCV6	1	
19:54	MA20282-CCB6	1	
20:00	MP42014-MB1	1	
20:67	MP42014-LC1	1	
20:14	MP42014-B1	7	
20:21	MP42014-31	1	Na overrange.
20:28	MP42014-S2	1	Na overrange.
20:35	J78128-;	1	(sample used for QC only; not part of login J18054)
20:42	MP42014-SD1	5	J78128-1 used.
20:49	378128-2	1	(sample used for QC ordy; not patt of login 378054)
20:56	222222	1	
21:03	MA20282-CCV7	1	
21:10	MA20282-CCB7	1	
21:17	222222	7	
21:24	722222	1	
21:31	222222	1	
21:38	222222	1	
21:45	222222	1	
21:52	22222	7	
21:58	222222	1	
22:05	22227	1	
22:13	22222	1	
22:19	227222	1	
22:26	MA20282-CCV8	2	

Accutest Laboratories Instrument Runlog Inorganics Analyses

Login Number: J78054 Account: EHTXF - Entact Houston Project: Chevron, Perth Amboy


File ID: SA122197M1.TCP

Analyst: RP Parameters: Pb

Date Analyzed: 12/21/07 Methods: EPA 200.7, SW846 6010B

Run	ID:	MA20282

Time	Sample Description	Dilution PS Factor Recov	Comments
22:40	ZZZZZZ	1	
22:47	ZZZZZZ	Ţ	
22:54	ZZZZZZ	1	
23:01	ZZZZZZ	1	
23:08	ZZZZZZ	1	
23:15	ZZZZZZ	1	
23:22	ZZZZZZ	1	
23:29	MP42015~MB1	1	CCV RSD bigh.
23:36	MP42015-LC1	1	CCV RSB high.
23:43	MA20282-CCV9	1	
23:50	MA20282+CCB9	1	
23:57	MP42015~S1	ī	
00:04	MP42015-S2	1	
00:11	J78242-1	1	(sample used for QC only; not part of Jogin J78054)
0Ġ:18	MP42015-S51	5	
00:25	ZZ ZŻ Z Z	1	
00:32	ZZZZZZ	1	
00:38	ZZZZZZ	ī	
00:45	2222ZZ	1	
00:52	ZZZZZZ	1	
00:59	ZZZZZZ	1	
01:06	MA20282-CCV10	1	
01:13	MA20282+CCB10	1	
01:20	ZZZZZZ	1	
01:27	222222	1	
01:34	ZZZZZZ	1	
01:41	ZZZZZZ	1	
01:48	ZZZZZZ	1	
01:55	222222	1	
02:01	ŹZZZZZ	1	
02:08	ZZZZZZ	1	
02:16	222222	1	
02:23	ZZZZZZ	1	

Accutest Laboratories Instrument Runlog Inoiganics Analyses

Login Number: J78054 Account: EETXF - Entact Houston Project: Chevron, Perch Amboy

file ID: SA122107M1.ICP Analyst: RP

Parameters: Pb

---->

Date Analyzed: 12/21/07 Mathods: EPA 200.7, SW846 6010B

Run	30;	MA20282
-----	-----	---------

Time	Sample Description	Dilution PS Factor Recov	Comments
02:30	MA20282-CCV11	1	
02:37	MA20282-CCB11	1	
02:44	MAZ0282-1CSA3	1	
02:51	MA20282-ICSAB3	1	
02:58	MA20282-CCV12	1	
03:05	MA20282-CCB12	3	
03:11	222222	1	
03:19	222232	1	
03:26	%3ZZZZ	1	
63:33	ZZZZZZ	1	
03:39	MP42010-MB1	1	
02:45	MP42010-B1	1	
C3:53	MP42010-S3	1	
04:00	MP42010-SZ	1	
04:07	378673-8	1	(sample used for QC only; not part of login J78054)
04:14	MP42010-SD1	5	
04:21	MA20282-CCV13	1	
04:28	MA20282-CCB13	1	
04:35	222222	1	
04:42	3323ZZ	1	
04:49	232332	1	
04:56	ZZZZZZ	1	
05:02	ZZZ7,ZZ	1	
05:09	IZZZZZ	1	
05:16	ZZZZZZ	1	
05:23	22222	1	
05:30	ZZZZZZ	1	
05:37	J78054-3	1	
05:44	MA20282-CCV14	1	
05:51	MA20282-CCB14	1	
05:58	J78054-2	1	
06:05	J78054-3	1	
06:11 Last re	J78054-4 portable sample/	l prep for job J7809	Mn≈39ppm. 4

Accutest Laboratories Instrument Runlog 1norganict Analyses

Login Number: J78054 Account: EHTXF - Entact Houston Project: Chevron, Perth Amboy

Pile ID: SA122107M1.ICP

Analyst: RP Parameters: Pb

----------->

Dage Analyzed: 12/21/07 Run ID: MA20282

Methods: EPA 200.7, SW846 6010B

Time	-	Dilutíon Factor	PS Recov	Comment:		
06:18	ZZZZZZ	1				
06:25	272722	1				
06:33	222%22	1				
0€:40	727272	1				
06:48	222322	1				
06:55	222222	1				
07:02	MA20282-CCV15	1				
07:08	MA20282-CCB15	<u>1</u>				
07:15	MA20282-ICSA4	1				
07:22	MA20282-ICSAB4	1				
7:29	MAZ0282~CCV16	1				
Last r	MA20282-CCB16 eportable CCB fo	r job _778(5±8 8		

Refer to raw data for calibration curve and standards.

INTERNAL STANDARD SOMMARY

Login Number: J78054 Account: EHTXF - Entact Houston Project: Chevron, Perch Amboy

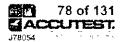
File ID: SA122107M1.ICP Analyst: RP

Analyst: RP Parameters: Pb Date Analyzed: 12/21/07 Run ID: MA20282

Methods: EPA 200.7, SW846 6010B

Time	Sample Descripcion	lstd # l	Istd#2	Istd#3	7scd#4
14:32	MA20282~STD1	4260 R	169270 R	36681 R	7794 R
24:39	MA20282-STD2	4029	259100	35308	7:07
14:46	MA20282-CCV1	4 1 7 0	161780	34172	7373
14:53	MA20287-CCB3	4301	169300	35898	7844
15:03	MA20782-STD3	4050	158480	33937	7077
15:12	MA20287-CCV2	4137	163740	35476	7360
15:21	MA20282-HSTD1	4016	157370	33956	7024
15:29	MA20282-CRIB3	4289	167310	35460	7775
25:35	MA20282~CRIA1	4283	168750	36056	7771
25:44	MA20282-ICV1	4292	166700	34792	7732
15:55	MA20282-1CB1	4294	167380	33709	7788
16:04	MA20282-100V1	4129	162920	34674	7382
16:18	MA20282-CCB2	4297	164090	35963	7819
16:28	MA20282-ICSA1	3739	148830	34159	6332
16:37	MA70287-ICSAB1	3746	148420	33545	6406
16:46	MA20282-CCV3	4201	160680	34864	7384
16:52	MA20282-CCB3	4332	168190	34510	7887
16:59	MP42017-MB1	4296	169840	36013	7859
17:06	MP42017-LC1	4307	166800	34617	7751
17:13	MP42017-S1	4053	160680	25271	7266
17:20	MP42017-S2	4094	158990	33594	7253
17:27	J78823~11	4129	163260	35347	7474
17:34	MP42017-SD1	4 382	169310	36085	7877
17:41	ZZZZZZ	4172	163430	35031	7487
17:48	ZZZZZZ	4316	172020	35905	7879
17:55	MA20282~CCV4	4242	164130	34780	7484
18:02	MA20282-CCB4	4356	169890	35797	7891
18:09	ZZZZZZ	4258	164630	35203	7679
18:16	ZZZZZZ	4742	167850	35742	7721
18:23	2 22222	4165	159360	33385	7426
18:30	22222	3964	154290	33881	6963
18:37			162940	33388	7535
18:44	ZZZZZŽ		155510	33908	7037

INTERNAL STAHDARD SUMMARY


Login Number: J78054 Account: EHTXF - Enract Mouston Project: Chevron, Perth Amboy

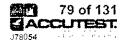
File ID: SA122307M1.ICP

Analyst: RP Parameters: Pb Dase Analyzed: 12/21/07 Run IO: MA20282

Methods: EPA 200.7, SW846 6010B

Time	Sample Description	Ist♂#1	Istd#2	Istd#3	Istà#4
18;51	28822Z	4239	161730	33129	7556
18:58	222222	4394	169320	34233	7903
19:05	MA20282-CCV5	4285	161390	32664	7440
19:12	MA2028Z-CC35	4401	169400	34954	7943
19:18	MA20282-CR <i>\$</i> B2	4390	163880	31868	7760
19:25	MA2028Z-CR\$A2	4418	169750	34160	7915
19:32	MA20282-ICSA2	3867	147160	31537	6481
19:39	MA20282-ICSAB2	3841	149040	32291	6500
19;47	MA20282-CCV6	4261	160110	32602	7413
19:54	MA20282-CCB6	4410	166710	32898	7887
20;00	MP42014-MB1	4383	164910	32962	7806
20:07	MP42014-LC1	4375	166810	34060	7804
20:14	MP42014-B1	4308	163020	33201	7589
20:21	MP42014-53	3638	140560	31989	6169
20:28	MP42014-S2	3657	139400	3;951	6163
20:35	J78128-1	3685	144600	32982	6300
20:42	MP42014-SD1	4190	157690	32616	7342
20:49	J78128-2	3668	141480	32203	6251
20:56	223232	4051	155390	33426	7099
21:03	MA20282-CCV7	4246	164590	34244	7445
21:10	MA20282-CCB7	4402	165170	32697	7812
21:17	277.122	4056	155050	33042	7108
21:24	222222	4174	158740	34105	7359
21:31	227222	4419	168040	34089	7932
21:38	22222	4395	166160	33131	7834
21:45	222777	4236	163450	33803	2595
21:52	222222	4256	161430	32956	7560
21:58	222722	3544	138410	22031	6003
22:05	222222	3925	151220	32301	6898
22:13	22222	4297	167340	35196	7607
22:19	22222	3820	146580	32171	6543
22:26	MA20282-CCV8	4278	160690	30457	7410
22:33	MA20282-CCB8	4411	165970	32460	7849

INTERNAL STANDARD SUMMARY


Login Number: J78054 Account: EHTXF - Entact Houston Project: Chevron, Perth Amboy

File ID: SA122107M1.ICP

Analyst: RP Farameters: Pb Date Analyzed: 12/21/07 Run 1D: MA20282

Methods: SPA 200.7, SW846 6010B

			Istd#3	Istd#4
223222	4382	1678?0	34441	7898
22222	4389	166710	33361	7869
ZZZZZZ	4146	159600	33947	7269
ZZZZZZ	3981	159860	32171	6848
22222	4406	169240	34284	7827
22222	4223	159920	33308	7427
22222	4064	151180	30612	6938
MP42015~MB1	4419	170360	34253	7971
MP42015~LC1	4392	165790	32895	7798
MA20282-CCV9	4285	162870	33252	7505
MA20282~CCB9	4426	165160	32607	7859
MP42015~31	4034	155230	32816	7003
MP42015~S2	4028	153470	32930	6990
J78242~1	4093	153690	32899	7158
MP42015-SD1	4346	162770	33016	7749
22222	4234	160110	31948	7495
%22%2Z	4266	164030	33392	7641
222223	4217	160880	32251	7492
222323	4251	163020	32517	7560
22222	4214	161580	32933	7508
222222	4199	160650	34378	7389
MA20282~CCV10	4281	162970	32587	7458
MA20282-CCB10	4408	164390	32151	7804
222222	4234	163090	33376	7507
222222	4047	153970	31338	7023
22222	4054	156920	32361	7134
223222	3451	139210	29607	6221
27222	4449	162740	33104	7806
722222	3375	130900	30771	5675
22222	3653	139160	30124	б103
222222	3647	140980	31,240	6158
222322	4177	157840	32424	7284
22222	4258	158950	32236	7447
	2272222 222222 222222 222222 222222 222222	ZZZZZZZ 4146 ZZZZZZZ 3981 ZZZZZZZ 4406 ZZZZZZZ 4223 ZZZZZZZ 4064 MP42015-MB1 4419 MP42015-LC1 4392 MA20282-CCV9 4285 MP42015-S1 4034 MP42015-S2 4028 J78242-1 4393 MP42015-SD1 4346 ZZZZZZ 4267 ZZZZZZZ 4217 ZZZZZZZ 4251 ZZZZZZZ 4199 MA20282-CCW10 4281 MA20282-CCB10 4408 ZZZZZZ 4047 ZZZZZZ 4047 ZZZZZZ 4449 ZZZZZZ 3653 ZZZZZZ 36647 ZZZZZZZ 3647 ZZZZZZZ 3647 ZZZZZZZ 4177	ZZZZZZZ 4146 159600 ZZZZZZZ 3981 150860 ZZZZZZZ 4406 169240 ZZZZZZZ 4223 159920 ZZZZZZZ 4064 151180 MP42015-MB1 4419 170360 MP42015-LC1 4392 165790 MA20282-CCV9 4285 162870 MP42015-S1 4034 355230 MP42015-S2 4028 153470 J78242-1 4093 153690 MP42015-SD1 4346 162770 ZZZZZZ 4234 160110 ZZZZZZ 4251 163020 ZZZZZZ 4251 163020 ZZZZZZ 4214 161580 MA20282-CCB10 4408 164390 ZZZZZZ 4234 163090 ZZZZZZ 4047 153970 ZZZZZZ 4047 153970 ZZZZZZ 4054 156920 ZZZZZZ 4054 156920 ZZZZZZ 4054 156920 ZZZZZZ 4054 156920	ZZZZZZZ 4146 159600 32947 ZZZZZZZ 3981 159860 32171 ZZZZZZZ 4406 169240 34284 ZZZZZZZ 4223 159920 33308 ZZZZZZ 4064 151180 30612 MP42015-MB1 4419 170360 34253 MP42015-LC1 4392 165790 32895 MA20282-CCV9 4285 162870 33252 MP42015-S1 4034 155230 32816 MP42015-S2 4028 153470 32630 J78242-1 4093 153690 32899 MP42015-SD1 4346 162770 33016 ZZZZZZZ 4234 160110 31948 ZZZZZZZ 4265 164030 32392 ZZZZZZ 4251 163020 32517 ZZZZZZ 4214 161580 32933 ZZZZZZ 4214 161580 32587 MA20282-CCV10 4281 162970 32587 MA20282-CCV20 4281 163090 33376 <tr< td=""></tr<>

INTERNAL STANDARD SUMMARY

bogin Number: J78054 Account: EHTXF - Entact Houston Project: Chevron, Perth Amboy

File ID: \$A122107M1,fCP

Analyst: RP Parameters: Pb Date Analyzed: 12/21/07

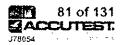
Methods: EPA 200.7, SW846 6010B

Run ID: MA20282

Time	Sample Description	Istd # l	Istd # 2	īstd#3	Istd#4
02:30	MA20282-CCV11	4291	164000	33548	7625
02:37	MA20282-CCB11	4535	166190	3 <i>22</i> 24	7975
02:44	MA20282-ICSA3	3993	145670	32106	6662
02:51	MA20282-1CSAB3	3959	148010	30931	6592
02:58	MA20282-CCV12	4359	160380	31219	7512
03:05	MA20282-CCB12	4498	167230	32608	7994
03:11	ZZZZZZ	4091	154790	30285	7096
03:19	ZZZZZZ	4536	167840	33437	7975
03:26	ZZZZZZ	4527	167860	32350	7972
03:33	ZZZZZZ	4523	166080	31948	7955
03:39	MP42010-MB1	4506	170400	33777	8063
03:46	MP42010-B1	4444	164630	32373	7749
03:53	MP42010-S1	4485	171320	34868	7370
04:00	MP42010-S2	4489	170470	34663	7493
04:07	J78673-8	4559	169370	33517	7529
04:14	MP42010-SD1	4521	171000	34350	7920
04;21	MA20282-CCV13	4377	163410	32626	7599
04:28	MAZ0282-CCB13	4504	164750	33537	7907
04:35	Z3Z3ZZ	4625	172410	34744	7734
04:42	ZZZ22Z	4771	175840	34909	7680
04:49	ZZZZZZ	4596	173820	35426	7699
04:56	ZZZZZZ	4771	174840	35136	7792
05:02	ZZZZZZ	4600	168750	33103	7658
05:09	22222	4623	176010	35943	7735
05:16	ZZZZZZ	4636	170740	34438	7764
05:23	ZZ227Z	4665	171970	35475	7812
05:30	72222	4612	172570	34476	7?50
05:37	J78054-1	4478	168540	33041	7782
05:44	MA20282-CCV14	4356	165250	33983	7629
05:51	MAZ0282-CCB14	4512	166850	32263	7978
05:58	J78054-2	4499	172990	3 5 632	75 35
06:05	J78054-3	4575	172600	34412	7748
06:11	J78054-4	4449	169270	35505	6721

1NTERNAL ETANDARD SUMMARY

Login Number: J78054 Account: EHTXF ~ Entact Houston Project: Chevion, Perth Amboy


File ID: \$A122107M1.1CP

Analyst: RP Parameters: Pb Date Analyzed: 12/21/07 Run 1D: MAZ0282

Methods: EPA 200.7, SW846 6010B

Time	Sample D e scríption	1std#1	Istd#2	1std#3	1std#4
06:18	222222	4960	188450	38536	7524
06:25	ZZZZZZ	4667	173990	34752	7763
06:33	222222	4564	169350	33031	7753
06:40	22222	4101	163020	35025	7128
06:48	22222	4518	169440	33946	7794
06:55	222222	4534	153580	34673	7781
07:02	MA20282-CCV15	4353	163070	32537	7569
07:08	MA20282~CCB15	4439	165320	32008	7828
07:15	MA20282~1C5A4	3861	150850	32223	6429
07:22	MA20282~1CSAB4	3879	149480	31600	6500
07:29	MA20182~CCV16	4370	162050	31578	7536
07:36	MA20282-CCB16	4537	168810	33223	8059
R ≈ Re	ference for IST	D limits.) = Oucs	ide limits	
LEGEND):				
īszd#	Parameter		Limit5		
	Yttrium (2243)		70~130		
コモアペーフ	V++ = ium /3600:	1	70120	Q	

īszd#	Parameter	Limits
1stá#1	Yttrium (2213)	70-130 %
1std#2	Yttrium (3600)	70~130 %
Istd#3	Yttsium (3710)	70~130 %
1std#4	Indium	შ∼130 %

BLANK RESULTS SUMMARY Part 1 - Initial and Continuing Calibration Blanks


Login Number: J78054 Account: EHTXF - Entact Houseon Project: Chevron, Pesch Amboy

File ID: SA122107M1.ICP QC Limits: result < RL Date Analyzed: 12/21/07 Run ID: MA20282 Methods: EPA 200.7, \$W846 6610B

Units: ug/l

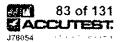
Time: Sample ID: Metal		IDI,	14:53 CCB1 raw	final	15:55 ICB1 raw	final	16:18 CCB2 raw	final	16:52 CCB3 raw	final
Aluminum	200	13	anr				***************************************			
Antimony	6.0	L	anr							
Arsenic	3.0	1.7	anr							
Barium	200	.3	anr							
Beryllium	I,0	, 1	anr							
Boron	100	1								
Cadmium	4.0	.09	anr							
Calcium	5000	14	anı							
Chromium	10	. 4	anr							
Cobalt	50	.3	anr							
Copper	25	3.3	anr							
1ron	100	2.1	anr							
Lead	3.0	1	0.20	<3.0	-0.40	<3,0	0.20	<3.0	0.0	<3.0
Magnesium	5000	22	anr							
Manganese	15	. 1	anr							
Molybaenum	20	. 4	ar.r							
Nicke1	40	.3	anr							
Palladium	50	2.5								
Potassium	10000	53	anr							
Selenium	10	2	anı							
Silicon	200	2.6								
Silver	10	.5	anr							
Sodium	70000	14	anr							
Strontium	10	. 2								
Thallium	2.0	. 9	anr							
Tin	10	.5								
Titanium	10	. 4								
Vanadium	50	.3	anr							
Zinc	20	1.5	anr							

(*) Outside of QC limits
(anr) Analyte not requested

BLANK RESULTS SUMMARY Part 1 ~ Initial and Continuing Calibration Blanks

Login Number: J78054 Account: EHTXF - Entact Houston Project: Chevron, Perth Amboy

File ID: SA122107M1.JCP QC Simits: result < RL

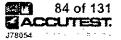

Date Analyzed: 12/22/07

Methods: EPA 200.7, 5W846 6010B

Run ID: MA20282 Units: ug/1

Metal Aluminum Antimony Arsenic	200 6.0 3.0	10L 13	raw anr	final	raw					
Antimony	6.0		qui			final	raw	fina]	raw	final
		1								
Arsenic	3.0		anr							
		1.7	anr							
Barıum	200	.3	anr							
Beryllium	1.0	, 1	anr							
Boron	100	1								
Cadmium	4.0	.09	anr							
Calcium	5000	14	anr							
Chromium	10	. 4	anr							
Cobalt	50	, 3	ánr							
Copper	25	3.3	anr							
ron	100	2.1	anr							
Lead	3.0	J	0.60	<3.0	0.20	<3.0	0.40	<3.0	~0.10	<3.0
Magnesium	5000	22	anr							
Manganese	15	.1	anr							
Molybdenum	20	. 4	ðПГ							
Nickel	40	. 3	anr							
Palladium	50	2.5								
Potassium	10000	53	anı							
Selenium	10	2	ans							
Silicon	200	2.6								
Eilver	10	.5	anr							
Sodium	10000	14	anr							
Stro∺tium	10	.2								
Challıum	2.0	, 9	anr							
lan .	10	.5								
Cítanium	10	. 4								
/anadium	50	.3	anr							
linc	20	1.5	anr							

(*) Outside of QC limits
(anr) Analyte not requested


Login Number: J78054 Account: EHTXF ~ Entact Houston Project: Chevron, Perth Amboy

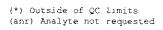
File ID: SA122107M1.FCP QC Limics: result < RL Date Analyzed: 12/21/07 Run 1D: MA20282 Methods: EPA 200.7, SW846 6010B

Onits: ug/l

Time: Sample ID: Metal		1DL	72:33 CCB8 raw	final	23:50 CCB9 raw	final	01:13 CCB20 raw	final	02:37 CCB11 raw	final
Alumiāum	200	13	anr							
Angimony	6.0	1	ánr							
Arsenic	3.0	1.7	anr							
2arıum	200	,3	anr							
Seryllium	1.0	.1	anr							
Вогоп	190	1								
Cadmium	4,0	.09	anr							
Calcium	5000	14	anr							
Chromium	10	. 4	anr							
Cobalt	50	.3	ānr							
Copper	25	3.3	anr							
Tron	100	2.1	anr							
Lead	3.0	1	-0.10	<3.0	0.10	<3,0	0.10	<3.0	0.30	<3.0
Magnesium	5000	22	anr							
Manganese	15	.1	anr							
Molybdenum	20	. 4	ánr							
Nickel	40	. 5	anr							
Palladíum	50	2.5								
Potassium	10000	53	anr							
Selenium	10	7	ati							
Silicon	200	2.6								
Silver	10	.5	afir							
Sodium	10000	14	anr							
Strontium	10	.2								
Thallium	2.0	. 9	ani							
Tin	10	.5								
Titanium	10	. 4								
Vanadıum	50	.3	anr							
Zinc	20	1.5	anr							

(*) Cucside of QC limits
(anr) Analyte not requested

BLANK RESULTS SUMMARY Part 1 ~ Initial and Continuing Calibration Blanks


Login Number: J78054 Account: EHTXF - Entact flouston Project: Chevron, Perth Amboy

Fale ID: SA172107M1.ICP QC Limits: result < RL

Date Analyzed: 12/21/07 Run ID: MA20282 Methods: EPA 200.7, \$\,\mathfrak{9}\,\mathfrak{846}\,6010\,\mathfrak{6}\,

ปีกits: ug/l

	Tíme: Sampìe 19: Metal	RL	IDL	03:05 CCBl2 raw	final	04:28 CCB13 raw	final	05:51 CCB14 raw	final	07:08 CCB15 raw	final
٠	Aluminum	200	13	anr	······································						
	Antimony	6.0	3	anr							
	Arsenic	3.0	1.7	anr							
	Barıum	200	, 3	anr							
	Beryllium	1,0	·i	ave							
	Boron	100	1								
	Cadmium	4.0	.09	асг							
	Calcium	5000	14	anr							
	Chromi um	10	. 4	anr							
	Cobalt	50	.3	anr							
	Copper	25	3.3	anr							
	Iron	100	2.1	anr							
	Lead	3.0	1	0.0	<3.0	0.20	<3.0	0.20	<3.0	0.30	<3.0
	Magnesium	5000	22	anr							
	Manganese	15	. 1	ant							
	Molybdenum	20	. 4	anr							
	Nićkel	40	.3	anr							
	Palladium	50	2.5								
	Potassium	10000	53	anr							
	Selenium	10	2	anr							
	Silicon	200	2.6								
	Silver	10	.5	anr							
	Sodium	10000	14	anr							
	Strontium	10	. 2								
	Thailium	2.0	.9	anr							
	Tìn	10	.5								
	Titanium	10	. 4								
	Vanadium	50	.3	anr							
	Zinc	20	1.5	ತರ್ಗ							

Login Number: J780S4 Account: EHTXF - Entact Houston Project: Chevron, Perth Amboy


File ID: SA122107M1.1CP QC Limits: result < RL

Date Analyzed: 12/21/07 Run ID: MA20282 Methods: EPA 200.7, SW846 6010B

Unims: ug/l

Time: Sample 1D: Metal	RL	1DL	07:36 CCB16 raw	final
Aluminum	200	13	anr	
Antimony	6.0	1	anr	
Arsenic	3.0	1.7	anr	
Bariom	200	.3	anr	
Beryllium	1.0	.1	anr	
Boron	100	1		
Cadmium	4.0	.09	anr	
Calcium	5000	14	anr	
Chromium	10	. 4	anr	
Cobalt	50	.3	anr	
Copper	25	3.3	anr	
fron	100	2.1	anr	
Lead	3.0	1	0.10	<3.0
Magnesium	5000	22	anr	
Manganese	15	.1	anr	
Molybdenum	20	. 4	anr	
Nickel	40	.3	anr	
Palladium	50	2,5		
Potassium	10000	\$3	anr	
Selenium	10	2	anr	
Silìcon	200	2.6		
Silver	10	.5	anr	
Sodium	10000	14	anr	
Strontium	10	.2		
Thallium	2.0	.9	anr	
Tin	10	.5		
Titanium	10	. 4		
Vanadium	50	.3	anr	
Zinc	20	1.5	a∩r	

(*) Outside of QC Limits (anr) Analyte not requested

Login Number: J78054 Accouns: EHTXF - Entact Houston Project: Ehevron, Perth Amboy

File ID: SA122107M1.ICP QC Limits: 95 to 105 % Recovery

Date Analyzed: 12/21/07 Run ID: MA20282 Methods: EPA 200.7, SW846 6010B

Units: ug/i

Time: Sample ID: Metal	CCV True	14:46 CCVl Results	∜ Rec	CCV T;ue	15:12 CCV2 Results	% Rec	ICV True	15:44 ICVl Results	% Rec
Aluminum	anr						· · · · · ·		
Antimony	ant								
Arsenic	ani								
Barium	anr					•			
Beryllium	anr								
Boron									
Cadmium	anr								
Calcium	anr								
Chromium	anr								
Cobalt	a∴r								
Copper	anr								
Iton	anr								
Lead	2000	2010	100.5	2000	2000	100.0	1000	1010	101.0
Magnesium	anr								
Manganese	ahr								
Molybdenum	anr								
Nickel	anr								
Palladium									
Potassium	anr								
Selenium	anr								
Silicon									
Silver	anr								
Sodium	anr								
Strontium									
Thallium	anr								
Tin									
Titanium	25.5								
Vanadrum	anr								
Zinc (*) Outside of (anr) Analyte									

Logic Number: J78054 Account: EHTXF - Entact Houston Project: Chevron, Perch Amboy

File ID: SA122107M1.ICP QC Limits: 95 to 105 % Recovery

Date Analyzed: 12/21/07 Kun ID: MA20282 Methods: EPA 200.7, SW846 6010B

Units: mg/l

Time: Sample ID: Metal	CCV True	16:46 CCV3 Results	₹ Rec	CCV True	17:55 CCV4 Results	t Rec	CCV True	19:05 CCV5 Results	f Xec
Aluminom	asr			·					
Antimony	ánr								
Arsenic	anr								
Barium	anr								
Beryllium	anr								
Boron									
Cadmium	anr								
Calcíum	anr								
Chromium	ant								
Cobait	anr								
Copper	anr								
Zron	anr								
Lead	2000	2000	100.0	2000	1980	99.0	2800	2010	100.5
Magnesium	anr								
Manganese	anr								
Molybdenum	anr								
Nickel	anr								
Palladium									
Pozassium	anr								
Selenium	anr								
Silicon									
Silver	anr								
Sodium	anr								
Strontium									
Tha11ium	anr								
Fin									
Ditanium									
/anadium	anr								
Zinc	anr								

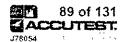
Login Number: J79054 Account: EHTXF - Entact Mouston Project: Chevron, Perth Amboy

21:03

File ID: SAI22107M1.ICP QC Limits: 95 to 105 % Recovery

Time:

19:47

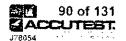

Date Analyzed: I2/21/07 Run ID: MA26282

Methods: EPA 200.7, SW846 6010B

22:26

Unics: ug/l

Sample ID: Metal	CCV True	CCV6 Results	اج Rec	CCV True	CCV7 Results	% Re⊏	CCV Tiue	22:26 CCV8 Results	9 Rec
Aluminum	ans								
Antimony	anr								
Arsenac	anr								
Sarium	ar,r								
Beryllium	anr								
Boron									
Cadmium	anr								
Calcium	anr								
Chromium	anr								
Cobalt	anr								
Copper	anr								
Iron	anr								
Lead	2600	2010	100.5	2000	2060	100.0	2000	2000	100.0
Magnesium	anr								
Manganese	anr								
Molybdenum	anr								
Nickel	anr								
Palladium									
Potassium	anr								
Selenium	anr								
Silicon									
Silver	anr								
Sodium	anr								
Strontium									
Thallium	anr								
Tin									
Tiçanium									
Vanadıum	anr								
Zinc	anr								
(*) Outside of (anr) Analyte	QC limit not reque	s st⊈d							


Login Number: J78054 Account: EMTXF - Entact Houston Project: Chevron, Perth Amboy

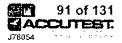
File ID: SA322107M1.1CP QC Limits: 95 to 105 % Recovery

(*) Outside of QC limits
(anr) Analyte not requested

Date Analyzed: 12/21/07 Run ID: MA20262 Methods: EPA 200.7, SW846 6010B Units: ug/1

Time: Sample ID: MeSal	CCV True	23:43 ECV9 Results	% Rec	CCV True	01:06 CCV10 Results	₹ Rec	CCV True	02:30 CCV11 Results	ኔ Rec
Aluminum	anr								
Antimony	anr								
Arsenic	anr								
Baríum	anr								
Beryllium	anr								
Boron									
Cadmium	anr								
Salcium	anr								
Chromium	anr								
Cobalt	anr								
Copper	anr								
Iron	anr								
Lead	2005	1990	99.5	2000	2000	100.0	2000	1980	99.0
Magnesium	anr								
Manganese	ānr								
Molybdesum	anr								
Nickel	anr								
Palladíum									
Potassium	anr								
Selenium	anr								
Silicon									
Silver	anr								
Sodium	anr								
Strontium									
Thallium	anr								
Tin									
Titanium									
Vanadium	anr								
Sinc	anr								

Login Number: J78054 Account: EHTXF - Entact Houston Project: Chevron, Perch Amboy

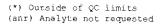

File ID: SAI22107M1.ICP QC Limits: 95 to 105 % Recovery Date Analyzed: 12/21/07 Run 15: MA20282

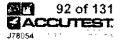
Methods: EPA 200.7, SW846 6010B Units: ug/l

Time:		02:58			04:21	***************************************	05:44	····
Sample ID: Metal	CCV Trre	CCV12 Results	% Rec	CCV True	CCVI3 Results % Rec	CCV True	CCVI4 Results % Rec	

Metal	True	Results	% Rec	True	Results	% Res	True	Results	% Rec
Aluminum	anr								
Antimony	anr								
Arsenic	anr								
Barium	anr								
Beryllium	anr								
Boron									
Cadmium	anr								
Calcium	anr								
Chromium	anr								
Cobalt	anr								
Copper	anr								
Iron	anr								
Lead	2000	2000	100.0	2000	1990	99.5	2000	1980	99.0
Magnestum	anr								
Manganese	anr								
Molybdenum	anr								
Nickel	anr								
Palladium									
Potassium	anr								
5elenium	anr								
Silicon									
Silver	anr								
Sodium	anr								
Strontium									
Thallium	anr								
Tin									
Titanium									
Vanadium	anr								
Zínc	anr								

^(*) Outside of QC limits
(anr) Analyte not requested




Login Number: J78054 Account: EBTXF - Entact Houston Project: Chevron, Perth Amboy

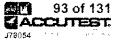
File JD: SA122107H1.TCP QC Limits: 95 to 105 % Recovery Date Analyzed: 12/21/07 Run ID: MA20282

Methods: EPA 200.7, 5₩846 6010B Units: ug/l

Time: Sample ID: Metal	CCV True	07:02 CCV15 Results	* Rec	CCV True	07:29 CCV16 Results	₹ Rec	
Alumanum	anr						-
ntimony	anr						
Arsenic	anr						
8arlum	anr						
Beryllium	anr						
Boron							
Cadmium	anr						
Calcium	anr						
Chromium	anr						
Cobalt	anı						
Copper	anr						
Iron	anr						
Lead	2000	2000	100.0	2000	2010	100.5	
Magneslum	anr						
Manganese	anr						
Molybdenum	anr						
Nickel	anr						
Palladium							
Potassium	anr						
Selenium	anr						
Silicon							
Silver	anr						
Sodium	anr						
Strontium							
Thallium	anr						
Tìn							
Títanium							
Vanadium	anr						
Zinc	anr						

HIGH STANDARD CHECK SUMMARY

Login Number: J78054 Actount: EMTXF - Entact Houston Project: Chevron, Perth Amboy


File ID: SAl22107%1.ICP QC Limits: 95 to I05 % Recovery

Date Abalyzed: 12/21/07 Run ID: MA20282 Methods: EPA 200.7, SW846 6010B

Units: ug/l

Time: Sample ID: Metal	H≎TD True	15:21 ASTD1 Results	% Rec
Aluminum	anr		<u> </u>
Antimony	anr		
Arsenic	anr		
Barium	anr		
Beryllıum	anr		
Boron			
Cadmium	ānr		
Calcium	anr		
Chromium	anr		
Cobalt	anr		
Copper	anr		
Iron	anr		
Lead	4000	4030	100.8
Magnesium	anr		
Manganese	anr		
Molybdenum	ánr		
Nickel	anr		
Palladíum			
Potassium	anr		
Selenium	anr		
Silicon			
Silver	anr		
Sodium	ánr		
Strontium			
Thallium	anr		
Tin			
Titanium			
Vasadium	anr		
Zinc	anr		
(*) Outside of	OC limit	te	

(*) Outside of QC limits (Enr) Analyte not requested

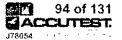
LOW CALIBRATION CHECK STANDARDS SUMMARY

Login Number: 378054 Account: EHTXF - Entact Houston Project: Chevron, Perth Amboy

19:25

File ID: SA%Z2107M1.7CP QC Limits: 50 to 150 % Recovery

Time:


Date Analyzed: 32/21/07 Run ID: MA20282

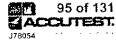
15:35

Methods: EPA 200.7, SW846 6010B

Units: ug/l

Sample ID: Metal	CRI True	CRIA True	CRIAL Results & Rec	CRIA2 Results % Rec
Aluminum				
Antimony	120	IO		
Arsenic	20	6.0	anr	
Barium	400			
Beryllium	10	2.0	anr	
Boron				
Cadmium	10			
Calsium				
Chromium	20			
Cobalt	100			
Copper	50			
Iron				
Lead	6.0	6.0		
Magnesium				
Manganese	30			
Molybdenum	40			
Nickel	80			
Palladium	100			
Potassium				
Selenium	10	10		
Silicon				
Silver	20			
Sodium				
Strontium				
Thallium	20	4.0	anr	
Tin				
Titanium				
Vanadíum	100			
2inc	40			
(*) Outside of (anr] Analyte				

INITIAL LOW CALIBRATION CHECK STANDARD SUMMARY


Login Number: J78054 Account: EHTXF - Entact Houston Project: Chevron, Perth Amboy

File ID: SA122107M1.ICP QC bimits: 50 to 150 % Recovery Date Analyzed: 12/21/07 Run ID: MA20282 Methods: EPA 200.7, SW846 6010B Units: Ug/l

.02	OIL CO.	pal, r	

Time: Sample IO: Metal	CRIB True	I5:29 CRIB1 Kesults	ኑ Rec	19:18 CRIB2 Results	% Rec
Aleminum	400				
Antimony	12				
Arsenic	16				
Barium	400				
Beryllium	2.0				
Boron	200				
Cadmium	8.0				
Calcium	5000				
Chromium	20				
Cobalt	100				
Copper	50				
fron	200				
Lead	6.0	6.8	113.3	0.1	116.7
Magnesium	5000				
Manganese	30				
Molybdenum	40				
Nickel	80				
Palladíum	100				
Potassium	10000				
Selenium	20				
Sílícon	400				
Silver	20				
Sodium	10000				
Strontium	20				
Thallium	20				
Tìn	20				
Titanium	20				
Vanadium	100				
Zinc	40				
141 0-4-140	of OC lim				

(*) Outside of QC limits (anr) Analyte not requested

INTERFERING ELEMENT CHECK STANDARDS SUMMARY Part 1 - ICSA and ICSAB Standards

Login Number: J78054 Account: SHTXF - Entact Houston Project: Chevron, Perch Amboy

File ID: SA12Z107Mi.TCP QC Limits: 80 to 120 % Recovery Date Analyzed: 12/21/07 Run ID: MA20282 Methods: EPA 200.7, SW846 6010B Units: ug/l

Time: 16:28 16:27 19:32 Sample ID: 1CSA ICSAB ICSA1 ICSAB1 ICSA2 Metal True True Results & Rec Results & Rec Results & Rec	19:39 ICSAB2 Repults %	Rec
Aluminum 500000 500000 512000 102.4 486000 97.2 505000 101.0	492000 98	. 4
Antimony 1000 -0.30 1080 108.0 -0.80	1050 10	5.0
Arsenic 1000 -1.2 1000 150.6 -0.10	992 99	.2
Barium 500 2.4 526 105.2 2.3	517 10	3.4
Beryllium 500 0.0 512 162.4 0.0	511 10	2,2
Boron 4.8 17.2 1.7	14.5	
Cadmium 1000 0.70 1130 113.0 0.70	1110 11	11.0
Calcium 400000 400000 384000 96.0 366000 91.5 401000 100.3	371000 92	2.8
Chromium 500 0.40 482 96.4 0.50	486 95	7,2
Cobalt 500 8.9 524 104.8 8.6	518 20	D\$.€
Copper 500 14.9 516 103.2 6.9	508 16	01.6
Iron 200000 200600 187000 93.5 185000 92.5 196000 95.0	187500 93	3.5
Lead 1000 -0.50 962 96.3 1.9	961 96	6.1
Magnesium 500000 500000 500000 100.0 539000 107.8 530000 106.0	554000 13	10.8
Manganese 500 0.80 505 101.0 0.80	509 10	01.8
Molybdenum 500 -2.9 496 99.2 -2.1	487 9	7.4
Nickel 1006 7.9 970 97.0 7.4	962 9	6.2
Palladium 500 9.4 556 111.2 10.4	541 1	08.2
Pocassium 4.6 7.1 28.2	7.9	
Selenium 1000 10.6 1030 103.0 21.4	1020 L	.01.0
Silicon		
Silver 1000 0.50 1080 108.0 0.60	1070 1	07.0
Sodium 59.9 54.8 88.9	81.1	
Stroneium 0.90 0.70 -0.10	0.30	
Thailium 1000 2.4 980 98.0 2.1	977 9	7.7
Tin 2.2 1.0	1,5	
Titanium 2.0 1.6 2.2	1.7	
Vanadium 500 -3.4 504 100.8 -3.5	503 1	100.6
Zinc 1000 1.6 978 97.8 1.8	993 9	99.3

(*) Outside of QC limits
(anr) Analyte not requested

INTERFERING ELEMENT THECK STANDARDS SUMMARY Pare 1 - ICSA and ICSAB Standards

Login Number: J78054 Account: SHIXF - Entact Houston Projett: Thevron, Perth Amboy

File ID: SA122107M1.ICP QC Limits: 80 to 120 % Recovery Date Analyzed: 12/21/07 Run ID: MA20282

Methods: EPA 200.7, SW846 6010B

Units: ag/l

Time: Sample 10: Metal	ICSA True	ICSAB True	02:44 ICEA3 Results	% Rec	02:51 ICSAB3 Results	% Rec	07:15 1CSA4 Resulos	% Rec	07:22 ICSAB4 Results	% Rec
Aluminum	500000	500000	503000	101.4	494000	98.8	509000	101,8	491000	98.2
Aneimony		1000	-U.20		1040	104.0	2.3		1070	107.0
Arsenit		1000	-1.6		982	98.2	-2.1		1000	100.0
Barium		500	2.4		516	103.2	2.4		521	104.2
Beryllium		500	0.0		515	103.0	0.0		516	103.2
Boron			1.5		14.2		3.2		15.6	
Cadmium		1000	0.80		1110	111.0	0.50		1140	214.0
Calcium	400000	400000	397000	99.3	382000	95.5	400000	100.0	383000	95.8
Chromium		500	0.20		498	99.6	-0.20		494	98,8
Cobalt		500	8.2		517	303.4	8.9		529	105.8
Copper		500	14.9		502	100.4	14.9		509	101.8
Iron	200000	200000	183000	93.5	189000	94.5	189000	94.5	188000	94.0
Lead		2000	-0.40		961	96.1	4.8		979	97.9
Magnesium	500000	500000	523000	104.6	567006	113.4	524000	104.8	561090	112.2
Manganese		505	0.90		519	103.8	0.80		516	103.2
Molybdehum		500	-2.6		486	97.2	-2.5		499	99.8
Nickel		1000	7.7		963	96.3	7.8		985	98.5
Palladium		500	7.7		541	108.2	8.4		545	109.0
Porașsium			- 25		-8.6		- 49		- 51	
Se_enium		1000	10.3		1010	101.0	9.9		1030	103.0
Silicon										
Silver		1000	0.60		1070	107.0	1.3		1080	108.0
Sodium			224		130		62.4		59.9	
Strontium			0.10		~0.10		0.20		~0.10	
Thallium		1000	1.9		984	98.4	2.6		991	99.1
Tin			1.7		1.0		1.0		1.5	
Titanium			2.0		1.8		2.0		1.9	
Vanadium		500	-3.5		507	101.4	-3.9		505	101.0
Zinc		1000	1.7		1010	102.0	2.6		1020	102.0
(+1 0 1) 5										

(*1 Outside of QC limits
(anr) Analyte not requested

Accutest Laboratories Instrument Runlog Inorganics Analyses

Login Number: J78054 Accoung: EHTXF - Entact Houston Project: Chevron, Persh Amboy


File ID: IT122407M1.DAT

Analyst: WP Parameters: Pb

Date Analyzed: 12/24/07 Methods: EPA 200.7, SW846 6010B

Run	ID:	MA20287
-----	-----	---------

Time	Sample Description	Dilution PS Factor Recov	Comments
	MA20287~STD1	1	STDA
	MA20287~STD2	1	STDB
	MA20287~STE3	3	STDC
	MA20287~ST34	1	STDD
	MA20287~STD5	2	STDE
	MA20287~STD6	40	STDF
	MA20287~STD7	2	STDG
11:08	MA20287~STD8	1	STDH
11:15	MA20287~STD9	2	STDI
11:52	MA20287~HSTD1	1	
12:21	MA20287~CRIB1	1	
12:27	MA20287~CR1A1	1	
12:33	MA20287~ICV1	1	
12;57	MA20287~ICB1	1	
13:03	MA20287~ICCV2	3	
13:11	MA20287~CCB1	1	
13:18	MA20287~ICSAî	1	
13:25	MA20287~ICSAB1	1	
13:31	MA20287~CCV1	1	
13:37	MA20287~CCB2	1	
13:44	MP42002~MB1	1	
13:49	MP42002~LC1	1	
13:55	MP42002~B1	1	
14:01	J79372~1	1	(sample used for QC only; not part of login J78054)
14:07	22222	7	
14:14	ZZZZZZ	2	
14:20	22222	1	
14:26	22222	1	
14:32	222222	1	
14:38	222222	1	
14:44	MA20287~CCVZ	1	
14:51	MA20287~CCB3	2	
14:57	222222	1	

Accutest Laboratories Instrument Runlog Inorganics Analyses

Login Number: 678054 Account: ESTXF - Entact Bouston Project: Chevron, Perth Amboy

File ID: IT122407M1.DAT Analyst: WP Parameterg: Pb

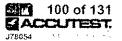
---->

~ ~~~ ~ ~ ~ ~ ~ >

Dase Analyzed: 12/24/07 Methods: EPA 200.7, SW846 6010B

Time	Sample Description	Dilucion Factor	PS Recov	Comments
15:03	ZZZZZZ	20		
15:69	ZZZZ3Z	10		
15:15	ZZZZZZ	1		
	J7805 4 ~4	3		
15:27	eportable sample %Z%ZZZ	3	100 0180	54
15:33	322222	3		
15:39	222222	i		
15:49	MP42000~MB1	1		
15:55	MP42000-LC1	1		
16:01	MA20287~CCV3	1		
16:19	MAZ0287-CCB4	1		
16:25	J78649~1	1		(sample used for QC only; not part of login J78954)
16:31	ZZZZZZ	1		
16:37	ZZZZZZ	î		
16:43	MP42000-S1	2		
16:49	MP42000-52	3		
16:55	MP42000-S51	ë		
17:02	22222	1		
17:08	14P42002-S1	1		
17:14	MP42002~S2	1		
17:20	MA20287~CCV4	2		
17:26	MA20287-CCB5	1		
17:34	MA20287~ICSA2	1		
17:42	MA20287-1CSAB2	1		
17:49	MA20287~CCV5	1		
Last r	MA20287-CCB6 eportable CCB fo: MP42002-SD1	1 r job 3780 5	54	
		1		
18:14	22222	1		
18:20	223222	1		
18:29	MP42024-MB1	1		
38:35	MP42024-B1	1		
18:42	MP42024-S1	1		

Accutest Laboratories Instrument Runlog Inorganics Amalyses


Login Number: J78054 Account: EHTXF - Entact Houston Project: Chevron, Perth Amboy

File ID: IT122407M1.DAT Analyst: WP Parameters: Pb

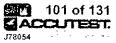
Date Analyzed: 12/24/07 Run ID: MA20287

Methods: EPA 280.7, SW846 6010B

†ime	Sample Description	Dilution PS Factor Recov	Comments
18:48	MP42024-S2	ì	
18:54	J78119~1	1	(sample used for QC only; not part of login J78054)
19:00	14A20287-CCV6	1	
19:06	MA20287-CCB7	1	
19:13	MP42024-SD1	5	
19:19	2222,22	1	
19:25	232222	<u>*</u>	
19:31	22222	1	
19:37	22222	1	
19:43	222222	1	
19:49	ZZZZZZ	1	
19:56	22222	3	
20:02	22222	1	
20:08	ZZZZZZ	1	
20:14	MA20287-GCV?	1	
20:20	MA20287-ÇÇB8	1	
20:27	22222	5	
20:33	Z2ZZZ	1	
20:39	Z2ZZZ	1	
20:45	232222	1	
20:51	22222	1	
20:57	222322	1	
21:03	ZZZZZZ	1	
21:10	Z2222Z	1	
21:16	22222	1	
21:22	22222Z	1	
21:28	MA20287-CCV8	1	
21:34	MA20287-CCB9	2	
21:41	MP42G25-MB1	1	
21:47	MP42025-Bl	1	
21:53	MP42025-S1	1	
21:59	MP42025-S2	<u> </u>	
22:05	J78818-10	1	(sample used for QC only; not part of login J78054)

Accutes: Laboratorles Instrument Runlog Inorganits Analyses

Login Number: 578054 Account: EMTXF - Entact Nouscon Project: Chevron, Perth Amboy


File ID: IT122407M1.DAT

Analyst: WP

Date Analyzed: 12/24/07 Run 13: MA20287

Methods: EPA 200.7, SW946 6610B

	ameters: Pb			Ruff 15: MAZ036) <i>(</i>		
Time	Sample Description	Dilution Factor	PS Recov	Comments		 	
22:11	MP42025-3D1	5				 	
22:18	22222	1					
22:24	ZZZZZZ	1					
22:30	222222	1					
22:36	22227,2	1					
22:42	MA20Z87-CCV9	1					
22:48	MA20287-CCB10	2					
22:55	222322	1					
23:01	222222	1					
23:07	222232	1					
23:13	ZZZZZZ	1					
23:19	222222	1					
23:25	222322	1					
23:32	3223ZZ	1					
23:38	222222	1					
23:44	232332	1					
23:50	22222	1					
22:56	MA20287-CCV10	1					
00:02	MA20287-CCB11	1					
00:09	MA20287-ICSA3	ñ					
00:15	MA20287-ICSAB3	1					
00:21	MA20287-CCVl1	1					
00:28	MA20287-CCB12	3					
00:34	22222	1					
00:40	222225	1					
00:46	222222	1					
00:52	ZZZZZZ	1					
01:00	202322	1					
01:06	MP41969-31	3					
01:12	MP41969-32	3					
01:19	22222	15					
01:25	MA20287-CCV12	1					
02:31	MA20287-CCB13	Σ					

Accutest Laboratories Instrument Runlog Inorganics Analyses

Logan Number: 378054 Account: EHTXF - Entact Houston Project: Chevron, Perth Amboy

File ID: IT122407M1.DAT

Analyst: WP Parameters: Pb Date Analyzed: 12/24/07 M

Methods: SPA 200.7, SW846 6010B

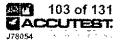
Run ID: MA20287

Time	Sample Description	Dilution Factor	PS Recov	Comments
01:37	MP42015-MB1	1		
01:43	MP42015~LC1	1		
01:50	233222	1		
01:56	ZZZZZZ	1		
02:02	222222	1		
02:08	MP42023-MB2	1		
02:14	MP42023-LC1	1		
02;20	MP42023-S1	2		Needs higher dilution for Pb
02:26	MP42022-S2	2		Needs higher dilution for Pb
02:33	222222	1		
02:33	J79512-1	1		(sample used for QC only; not part of login J78054)
02:39	MA20287+CCV13	1		
02:45	MA20287+##B14	1		
02:51	MP42023-SD1	5		Needs higher dilution for Pb
02:57	222223	1		
ψ3:06	MP42028-MB2	1		
03:12	MP42028+B1	1		
03:18	MP42028-S1	2		
03:24	MP42028+S2	1		
03:30	J79924-4	1		(sample used for QC only; not part of login J78054)
03:36	MP42028-SD1	5		
03:43	222222	100000		
03:49	222222	100000		
03:55	MA20287+CCV14	1		
04;01	MA20287+CCB15	ì		
04:07	222222	100000		
04:14	22222	100000		
04:20	22222	100000		
04:26	222222	100000		
04:32	32222Z	100000		
04:38	22222	1		
04:44	222222	1		
04:50	22222	2		

Accutest Laboratories Instrument Rumlog Inorganics Analyses

Login Number: J78054 Account: ENTXF - Entact Houston Project: Chevron, Perch Amboy

File ID: IT122407M1.3AT Analyst: WP


Parameters: Pb

Pun ID: MA20287

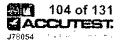
Date Analyzed: 12/24/07 Methods: EPA 200.7, SW846 6010B

		, ,	110 0110 010 1	 200.7	24010
Dun TI	5 MX	さんつなつ			

Time	Sample Description	Dilution P3 Factor Recov	Commencs
04:57	ZZZZZZ	1	
05:03	ZZZZZZ	1	
05:09	MA20287-CCV15	1	
05:15	MA20287-CC316	1	
05:22	ZZZZZZ	1	
05:28	ZZZŻZZ	1	
05:34	ZZZZZZ	1	
05:40	22222	1	
05:46	ZZZZZZ	1	
05:54	MP42029~MB1	I	
10;00	MP42029~B1	1	
06:07	MP42029-S1	í	
06:13	MP42029-32	1	
06:19	J79925~4	1	(sample used for Q2 only; not part of logic J78054)
06:25	MA20287~CCV16	1	
06:31	MA20287~CCB17	1	
06:38	MA20287+IC5A4	1	
06:44	MA20287~1CSAB4	1	
06:50	MA20287~CCV17	1	
06:57	MA20287~CCB18	ì	
07:03	MP42029~SD1	5	
07:09	22222	1	
07:15	ZZZZZZ	1	
07:21	ZZZZZZ	1	
07:27	ZZZ2ZZ	j	
07:34	ZZZZZZ	1	
07:40	ZZ2Z2%	1	
07:46	22222	1	
07:52	ZZZZZZ	1	
07:58	ZZZZZZ	1	
08:04	MA20287-CCV18	1	
08:11	MA20287~CCB19	1	
08:17	22223	1	

Accutest Laboratories Instrument Runlog Inorganićs Analyses

Login Number: J78054 Account: EHTXF - Entact Houston Project: Chevron, Perth Amboy


File ID: IT122407M1.DAT

Analyst: WP Parameters: Pb 0ate Analyzed: 12/24/07 Run II): MA20287

Methods: EPA 200.7, SW846 6010B

Time	Sample Description	Dilution PS Factor Recov	Comments	
08:23	MA20287-CCV19	1		
08:29	MA20287-CCB20	<u>:</u>		
08:36	MA20287-ICSA5	1		
08:42	MA20287-ICSA55	1		
08:48	MA20287-CCV20	1		
08:54	MA20287-CC321	2		

Refer to raw data for dalibration curve and standards.

Login Number: J78054 Account: EHTXF - Entact Houston Project: Chevron, Perth Amboy

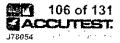
File ID: ITIZ2407Ml.DAT Amalyst: WP

Parameters: Pb

Date Analyzed: 12/24/07 Run ID: MA20287

Methods: EPA 200.7, SW846 6010B

Time	Sample Description	Istd #1
10:24	MA20287-STD1	7575Z R
10:31	MA20287-STD2	76181
10:37	MA20_787-STD3	76619
10:43	MA20287-STD4	76087
10:50	MA20Z87-STD5	76608
10:56	MA20287-5TD6	75465
12:02	MAZ0287-STD7	75556
I1:08	MA20287-STD8	74807
11:15	MA20287-ST29	74406
11:52	MA20Z87-HSTD1	74687
12:21	MA20287-CPI21	75260
12:27	MA20287-CRIAI	75779
12:33	MA20287-ICV1	76309
1Z:57	MA20287-16B1	75632
13:03	MA20287-100V1	74733
13:11	MA20287-CCB!	75440
13:18	MA20287-ICSA1	70955
13:25	MA20287-ICSABL	71908
12:31	MA20287-TCVI	74333
13:37	MA20287-CCB2	75392
13:44	MP42002-MB1	74857
12:49	MP4200Z-LC1	75654
13:55	MP42002-B_	75104
14:01	J79372-1	75304
I4:07	Z222ZZ	74947
	ZZZZZZ	75154
14:20	ZZZ222	74968
	72222	
	ZZZZ <i>Z</i> ,2,	
	ZZZZZZ	
	MAZ0287-CCV2	
	MA20287-CCB3	
4:57	ZZZZZZ	73710

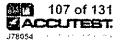

Login Number: J78054 Account: EHTXF - Entatt Houston Projett: Chevron, Perth Amboy

File ID: IT122407M3.DAT Analyst: WP

Analyst: WP Parameters: Pb Date Analyzed: 12/24/07 Run 1D: MA20287

Methods: EPA 200.7, SW846 6010B

Time	Sample Description	lgtd#1
		72593
	22222	
		75246
		77998
		75056
		73168
	22222	
		73888
	MP42000-LC1	73531
		72664
	MA20287-CCB4	
		72683
		71986
		70090
	MP42000-31	
	MP42000-S2	
		74050
		75271
		73651
	MP42002-S2	73641
	MA20287~CCV4	
		75264
	MA20287-ICSA2	
	MA20287-ICSA2	
	MA20287-CCV5	
	MA20287-CCB6	
		75202
	Z2Z23Z	
	727272	96513 :
	222222	75702
		75857
		77435
		76084
18:42	MP42024-S1	81591


Login Number: J78054 Account: EMTXF - Entact Houston Project: Chevron, Perth Amboy

file ID: IT122407M1.DAT
Analyst: WP
Parameters: Pb

Date Analyzed: 12/24/07 Run ID: MA20287

Methods: EPA 200.7, 5W846 6M109

Pala	meters: Pb	
Time	Sample Description	Jstá ∦ 1
8:48	MP42024-S2	80823
18:54	J78119-1	83144
19:00	MA20287-CCV6	75793
19:06	MA20287-CCB7	75467
19:13	MP42024-SD1	76687
19:19	22222	82405
9:25	22222	82001
19:31	222222	103651 !
9:37	222222	92483
9:43	222222	82513
9:49	22222	80688
9:56	222222	81878
20:02	27222	82145
20:08	22222	87166
0:14	MA20287-CCV7	74604
0:20	MA20287-CCB8	75261
0:27	222222	86406
0:33	222222	80319
0:39	22222	80965
0:45	222222	79499
0:51	22222	81283
0:57	222222	80581
ī:03	ZZZZZ	£52.05
1:10	22222	81971
1:16	22222	84996
1:22	22222	82641
1:28	MA20287-CCV8	76505
3:34	MA20287-CCB9	77287
1:41	MP42025-MB1	78452
1:47	MP42025-B1	76560
1:53	MP42025-S1	7?305
1:59	MP42025-S2	77085
2:05	J78818-10	77848

Login Number: J78054 Account: EHTXF - Entact Rouston Project: Chevron, Perth Amboy

File 1D: 1T122407M1.DAT

Analyst: WP Parameters: Pb Date Analyzed: 12/24/07 Run ID: MA20287 Methods: EPA 200.7, SW846 6010B

2:n Th: ME20292

Time	Sample Description	Istd#1
22:11	MP42025~SD1	78106
22:18	222222	75486
22:24	222122	79348
22:30	322222	77827
22:36	222222	77673
22:42	MA20287-CCV9	76544
22:48	MA20287-CCB10	77186
22:55	222222	77746
23:01	322222	78037
23:07	ZZZZZZ	78233
23:13	722222	78077
23:19	222272	87511
23:25	222222	79065
23:32	222722	78010
23:38	222322	78094
23:44	222222	78491
23:50	222222	78181
23:56	MA2028T-CCV10	76749
00:02	MA20287-CCB11	77463
00:09	MA20287-IC9A3	72259
00:15	MA20287-JCSAB3	T2720
00:21	MA20287-CCV11	T4070
00:28	MA20287-CCB12	77656
00:34	223222	78209
00:40	222222	78539
00:46	222322	78046
00:52	222222	77777
01:00	222222	77912
01:06	MP41969-S1	76668
01:12	MP41969-S2	76834
01:19	222222	76723
01:25	MA20287-CCV12	75493
01:31	MA20287-CCB13	T6312

Login Number: 378054 Account: ESTXF - Entact Houston Project: Chavron, Perth Amboy

File ID: 1T122467Ml.DAT Analyst: WP

Parameters: Pb

Date Analyzed: 12/24/07 Run ID: MAZ0287

Mechods: EPA 200.7, SW846 6010B

	I/GII I	D. PMEUZO:	

Time	Sample Description	ïstd#1
01:37	MP42015-MB1	76960
01:43	MP42015~LC1	77259
01:50	222222	74859
01:56	ZZZZZZ	77619
02:02	222222	76049
02:08	MP42023~MB2	76222
02:14	MP42023-LC1	78075
02:20	MP42023-S1	78121
02:26	MP42023-S2	78068
02:33	ZZZZZZ	75820
02:33	J79512-1	75820
02:39	MA20787~CCV13	
	MA20287~CCB14	
	MP42023~3D1	78207
	ZZZZZZ	77147
	MP42028~MB1	80432
	MP42G28-B1	80700
	MP42028-S1	
	MP4Z028~3Z	81730
	J79824~4	83045
	MP42028-5D1	79972
	ZZZZZZ	81759
	ZZZZZZ	79831
	MA20287~CCV14	
	MA20287~CCB15	
	ZZ22ZZ	78810
	ZZZZZZ	
	ZZZZZZ	84056 82753
	222222 222222	
	ZZZZZZ	80456
		81139
		80825
		90745
υ 4: 5U	Z%ZZZZ	81000

Login Number: J78054 Account: EHTXF - Entact Houston Project: Chevron, Perth Amboy

File ID: IT122407M1.DAT Analyst: WP

Analyst: WP Parameters: Pb Date Analyzed: 12/24/07 Run 1D: MA20287

Methods: EPA 200.7, SW846 6010B

Sampie Time Description Istd#1 04:57 Z%2ZZZ 82117 05:03 ZZZZZZ 82800 05:09 MA20287-CCV15 76996 05:15 MA20287-CCB16 77341 05:22 ZZZZZZ 81846 05:28 222222 80581 05:34 222222 83039 05:40 ZZZZZZ 82931 05:46 2ZZZZZ 81512 05:54 MP42029-MB1 79323 06:01 MP42029~B1 79504 06:07 MP42029-S1 82535 06:13 MP42029-S2 82507 06:19 J79925-4 81179 06:25 MAZ0287-CCV16 77805 06:31 MA20287-CCB17 78840 06:38 MA20Z87-ICSA4 ?4193 06:44 MA20287-ICSAB4 73561 66:50 MA20287-CCV17 76394 06:57 MA2(t287-CCB18 77390 07:03 MP42029-SD1 77357 07:09 ZZZZZZ 80396 07:15 ZZZZZZ 81471 07:21 ZZZ%%Z 83117 07:23 222222 83761 07:34 ZZZZZZ 81675 07:40 %ZZZZZ 80122 07:46 ZZZZZZ 79946 07:52 22222 80262 07:58 ZZZZZZ 80646 08:04 MA20287-CCV18 77348 08:11 MA20287-CCB19 77540 08:17 ZZ2Z2Z 83823

Login Number: J78054 Account: EMIXF - Entact Houston Project: Chevron, Perth Amboy

File ID: IT122407M1.DAT Analyst: WP

Parameters: Pb

Dare Analyzed: 12/24/07 Run ID: MA20287

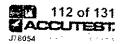
Methods: EPA 200.7, SW846 6010B

lime	Sample Lescription	Istd#1		
08:23	MA20787-CCV19	76591	· · · · · ·	
08:29	MA20287-CCB20	77866		
08:36	MA20287-1CSA5	73354		
00:42	MA20287~ICSAB5	73464		
08:48	MA20287-CCV20	76087		
08:54	MA20287-00B21	76974		
R = Re	ference for IST	D limizs.	! ~ Outside	lumits.
LEGEND Istd# 1std#1	Patameter		Limits 60~125 %	

BLANK RESULTS SUMMARY Parn 1 - Initial and Continuing Calibration Blanks

Login Number: J78054 Account: EHTXF - Entact Rouston Project: Chevron, Perth Amboy

File ID: IT122407M1.DAT QC Limits: result < RL


Date Analyzed: 12/24/07 Run 1D: MA20287

Methods: EPA 200.7, 5W846 6010B

Units: ug/1

Tim Sample I Metal	e: D: RL	IDL	12:57 ICB1 raw	final	13:11 CCB1 raw	final	13:37 CCB2 raw	final	14:51 CCB3	
Aluminum	200	26	апт			- 21122		21/101	raw	final
Antimony	6.0	5.3	anr							
Arsenic	8.0	4.2	ānr							
Barium	200	. 3	anr							
Reryllium	1.0	.2	anr							
Cadmium	4.0	. 4	asz							
Calcium	5000	85	anr							
Chromium	10	. 9	anr							
Cobalt	50	1.1	anr							
Copper	25	1.3	anr							
lron	100	8.3	anr							
Lead	3.0	2.7	1.5	<3.0	4,9	* (a)	1.7	<3,0	2.5	<3.0
Magnesium	5000	24	ans							13.0
Manganese	15	. 4	asr							
Molybdenum	20	1.2								
Nickel	40	1.7	anr							
Palladium	50	5.8								
Potassium	10001	66	anr							
Selenıum	10	3.9	anr							
Silicon	200	٤.6								
Silver	10	1.5	anr							
Sodium	10000	480	anr							
Thalllum	10	5	anr							
Tin	10	2.7								
Vanadıum	50	1.6	апr							
Zinc	20	4.2	anr							

^(*) Outside of QC limits

^(*) Outside of QL limits(anr) Analyte not requested(a) Within RDL limits for TCLP leachates and soils and less than 3 times the IDL for this element. Only TCLP and soil samples reported for this element in the area bracketed by this QC.

BLANK RESULTS SUMMARY Part 1 - Initial and Continuing Calibration Blanks

Login Number: 378054 Account: EHTXF - Entact Houston Project: Chevron, Perth Amboy

File ID: IT122403M1.DAT QC Limits: result < RL

Date Analyzed: 12/24/07 Run ID: MA20267

Methods: EPA 200.7, SW846 6010B Units: ug/l

Time Sample IS			16:19 CCB4		17:26		17:55		
Metal	RL	IDL	raw	final	CCB5 faw	final	CCB6 raw	final	
Alumisum	200	26	anr						
Antimony	6.0	5.3	ans						
Arsenic	8.0	4.2	anr						
Barium	200	.3	anr						
Beryllíum	1.0	. 2	ar.r						
Cadmium	4.0	. 4	anr						
Calcium	5000	85	anr						
Chromium	10	.9	ahr						
Cobalt	50	1.1	anr						
Copper	25	1.3	anr						
Iron	100	8.3	ânr						
Lead	3.0	2.7	0.68	<3.0	-0.96	<3.0	3.0	<3.0*fa}	
Magnesium	5000	24	anr						
Manganese	15	. 4	atir						
Molybdenum	20	1.2							
Vickel	40	1.7	anr						
Palladium	50	5.8							
otassıum	10000	66	an:						
Selenium	10	2.9	anr						
Silicon	200	6.6							
Silver	10	1.5	ānr						
odium	10000	480	anr						
hallium	10	5	an:						
in.	10	2,7							
anadium	50	1.6	anr						
inc	20	4.2	anı						

^(*) Outside of QC limits

fant) Analyte not requested

[ant] Analyte not requested

[ant] Within RDL limits for TCLP leachates and soils and less than 3 times the IDL for this element. Only TCLP and soil samples reported for this element in the area bracketed by this QC.

CALIBRATION CHECK STANDARDS SUMMARY Initial and Continuing Calibration Checks

Login Number: J78054 Account: EHTXF - Entact Houston Project: Chevron, Perch Amboy

File ID: IT122407M1.DAT QC Limits: 95 to 105 % Recovery

Date Analyzed: 12/24/07 Run ID: MA20287

Methodo: EPA 200.7, SW846 60103

Units: ug/l

Time: Sample ID: Meçal	ICV True	12:33 ICV1 Results	₹ Rec	CCV True	13:31 CCV1 Results	₹ Rec	CCV True	14:44 CCV2 Results	% Rec
Alukinum	anr								
Antimony	anr								
Arsenic	anr								
Barium	anr								
Beryll⊱um	anr								
Cadmium	anr								
Calcium	anr								
Chromium	anr								
Cobalt	anr								
Copper	anr								
Iron	anr								
Lead	1000	1010	101.0	2000	1970	98.5	2000	2010	100.5
Magneslum	anz								
Manganese	anr								
Molybdenum									
Niikel	anı								
Palladium									
Potassium	anr								
Selenium	anr								
3ilıcon									
Silver	anr								
Bodium	anr								
Challium	anr								
Γin									
Vanadium	anr								
Zìnc	anr								
(*) Outside of (anr) Analyte m									

CALIBRATION CHECK STANDARDS SUMMARY Initial and Continuing Calibration Checks

Login Number: J78054 Account: EHTXF - Entact Houston Project: Chevron, Perth Amboy

File ID: IT122407M1.DAT QC Limits: 95 to 105 t Recovery

Date Analyzed: 12/24/09 Run ID: MA20287 Methods: EPA 200.7, SW846 6010B

Unats: ug/l

Time: Sample ID: Metal		16:0I CCV3 Results	% Rec	CCV True	17:20 CCV4 Results	% Rec	CCV True	17:49 CCVA Results	ί Rec
Aluma חוגים	anr								
Angimony	anr								
Arsenic	anr								
Bagium	anr								
Beryllium	anr								
Cadmium	ang								
Calcium	anr								
Chrominu	anr								
Cobalt	anr								
Copper	anr								
Iron	anr								
Lead	20D0	2030	101.5	2000	2050	102.5	2000	2010	100.5
Magneslum	anr								
Manganebe	anr								
Molybdenum									
Nigkel	anr								
Palladium									
Potassium	anr								
Selenium	anr								
Silzcon									
Silver	anr								
Sodium	anr								
Thallium	anr								
Tin									
Vanadium	anr								
Zánc	anr								
(*) Ourside of (anr) Analyte	not reque	s ssed							

HIGH STANDARD CHECK SUMMARY

Login Number: 378054 Account: SHTXF - Entact Houston Project: Chevron, Perth Amboy

file fD: IT122407M1.DAT QC Limits: 95 to 105 % Recovery

Dace Analyzed: 12/24/07 Run ID: MA20287

Methods: EPA 200.7, 50846 6010B

Units: ag/l

Time: Sample ID: Metal		ll:52 HSTDl Results	% Rec
Aluminum	anr		
Antimony	anr		
Argenic	anr		
Barium	anr		
Beryllıam	anr		
Cadmium	anr		
Calcium	anr		
Chromaum	anr		
Cobalt	anr		
Copper	anr		
Iron	anr		
Lead	4000	3920	97.8
Magnesium	anr		
Manganese	anr		
Molybdenum			
Nickel	anr		
Palladium			
Potassium	anr		
Selenium	anr		
Salicon			
Silver	anr		
Sodium	anr		
Thallium	anr		
Tin			
Vanadium	anr		
Zinc	anr		
(*) Outside of (anr) Analyte	QC limit not reque	s sted	

J78054

LOW CALIBRATION CHECK STANDARDS SUMMARY

login Number: J78054 Account: EHTXF - Estact Houston Project: Chevron, Perth Amboy

Fale ID: IT122407M1.DAT QC Limics: 50 to 150 % Recovery

Run ID: MA2

Date Analyzed: 12/24/07 Methods: EPA 200.7, SW846 60108

20287	Units:	na/3

Time: Sample ID:	CRI	CRIA	12:27 CP.IA1
Metal	True	True	Results & Rec
Aluminum			
Antimony	120	10	
Arsenic	20	30	
Barium	400		
Beryllium	10	2.0	anr
Çadmium	10		
Calcium			
Chromium	20		
Cobalt	100		
Copper	50		
lron			
Lead	6.0	6.0	
Magnesium			
Manganese	30		
Molybdenum	40		
Nicke2	₽0		
Palladium	100		
Potassium			
5eleníum	10	10	
Silicon			
Silver	20		
Sodium			
Thallium	20	20	
Tin			
Vanadium	100		
Zine	40		
(*) Outside of		t e	

(*) Outside of QC limits (anr) Analyte not requested

INITIAL LOW CALIBRATION CHECK STANDARD SUMMARY

Login Numbet: J78054 Account: EHTXF - Entset Houston Project: Thevron, Perth Amboy

File 10: IT122407M1.DAI QC Limits: 50 to 150 % Recovery

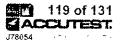
Date Analyzed: 12/24/07 Pun ID: MA20287

Methods: EPA 200.7, SW846 6010B

Units: ug/l

Time: Sample ID: Metal	JR∏B T±ue	12:21 CRIB1 Results	₹ Rec
Aleminum	400		
Antimony	12		
Arsenic	16		
Barium	400		
Beryllium	2.0		
Cadmium	8.0		
Calcium	5000		
Chromium	20		
Cobalt	100		
Copper	50		
Iron	200		
Lead	6.0	7.1	118.3
Magnesium	5000		
Manganese	30		
Molybdenum	40		
Nickel	80		
Palladium	100		
Potassium	10000		
Selenium	20		
Silicon	400		
Silver	20		
Sodium	10000		
Thallium	20		
rin	20		
/anadium	100		
Sinc	40		

(*) Outside of QC limits (anr) Analyte not requested


INTERFERING SLEMENT CHECK STANDARDS SUMMARY Part 1 - ICSA and 105AB Standards

Login Number: 078054 Account: BHTXF - Entact Houston Project: Chevron, Perth Amboy

File ID: IT12Z407M1.DAT QC Limits: 80 to 120 & Recovery Date Analyzed: 12/24/07 Run ID: MA20287 Methods: EPA 200.7, SW845 60108 Units: ug/1

Time: Sample ID:		ICSAB	13:18 FCSA1		13:25 105AB1		17:34 ICSA2		17:42 1CSAB2	
Metal	True	True	Results	₹ Rec	Results	t Rec	Results	% Rec	Results	† Rec
Aluminum	500000	500000	490000	98.0	502000	100.4	506000	101.2	517000	163.4
Antimony		1000	5.2		961	9€.1	6.3		1030	103,0
Arsenic		1000	8.9		1030	103.0	8.0		1060	106.0
Barıum		500	-0.26		511	102.2	-0.24		528	105.6
ßeryllium		500	0.14		501	100.2	0.16		522	104.4
Cadmium		1000	2.1		971	97.1	2,8		1010	101.0
Calcíum	400000	400000	391000	97.8	379000	94.8	407000	101.8	394000	98.5
Chromáum		500	8.2		494	98.8	8.2		510	102.0
Cobalt		500	-2.2		471	94.2	-2.7		490	98.0
Copper		500	-0.84		491	98.2	1.0		512	102.4
Iron	209000	200000	195000	97.5	392000	95.0	200000	100.0	197000	98.5
Lead		1000	7.1		965	96.5	4.2		1010	201.0
Magnesium	500000	500000	506000	101.2	509000	101.8	520000	104.0	521600	104.2
Mangahete		500	4.1		426	99.2	4.7		514	102.8
Molybdenum		500	-2.7		497	99.4	-2.1		511	192.2
Nickel		1000	-3.0		929	92.9	-2.3		964	96.4
Palĭadíum		500	4.9		510	102.0	7.1		530	106.0
Potassium			4210		4070		4230		4120	
Selenium		1000	5.5		1000	100.0	6.5		1040	104.0
Silìcon										
Silver		1000	-0.87		1080	108.0	0.62		1120	112.0
Sodium			-280		-350		-1 70		~590	
Thallium		1000	7.1		971	97.1	4.3		993	99.3
Tín			-3.9		-3.8		~1,1		-5.1	
Vanadium		500	-10		505	101.0	-11		513	102.6
Zinc		1000	-3.6		950	95.0	-2.9		985	98.5

(*) Outside of QC limits
(anr) Analyte not requested

BLANK PESULTS SUMMARY Part 2 - Method Blanks

Login Number: J78054 Account: EHTXF - Entact Rouston Project: Chevron, Perth Amboy

QC Batch FD: MP41826 Matrix Type: LEACHATE

Methods: SW846 6010B Units: mg/i

Frep Sate:

12/11/07

Metal	RL	IDĮ,	MB raw	final
Aluminum	0.20	.019		
Antimony	0.20	.0051		
Arsenic	0.50	.0031		
Barium	1.0	.0003		
Beryllium	0.0050	.0001		
Cadmium	0.0050	.0004		
Calcium	5.0	.022		
Chromium	0.010	.0009		
Cobalt	0.050	.0011		
Copper	0.025	.0013	anr	
Iron	0.30	.0083		
Lead	0.50	.0027	0.0047	<g.50< td=""></g.50<>
Magnesium	5.0	.0076		
Manganese	0.015	.0004		
Molybdenum	0.910	.0012		
Nickel	0.040	.0017	anr	
Palladzum	0.010	.0058		
Potassium	10	.061		
Selenium	0.50	.0035		
Siliton	0.20	.0066		
Silver	0.000	.0015		
Sodium	5.0	.45		
Thallium	0.20	.005		
Tin	0.010	.0027		
Vanadium	0.050	.0016		
Zinc	0.10	.0014	anr	

Associated samples MP41826: J78054-1A, J78054-2A, J78054-3A, J78054-4A

Results < $^{\dagger}DL$ are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: J78054 Account: EHTXF - Entact Houston Project: Chevron, Perth Amboy

QC Satch ID: MP41826 Matr:x Type: LEACHATE Methods: SW846 6010B Units: mg/l

Prep Date:

12/05/07

Metal	J77710-1 Original MS	Spikelot MPITCLP1 % Rec	QC Limits
Aluminum			
Antimony			
Arsenic	ânr		
Barlum	anr		
Beryllium			
Cadmium	anr		
Calcium			
Chromium	anr		
Cobalt			
Copper			
Iron			
Lead	0.057 1.9	2.0 92.2	78-125
Magnesium			
Manganese			
Molybdenum			
Nickel			
Palladíum			
Potassium			
Selenium	anr		
Siliton			
Sílver	anr		
Sodium			
Thallium			
Tìn			
Vanadium			
Zinc			
Associated sam	ples MP41826: J78	054-1A, J78054-2A,	J78054-3A, J78054-4A
(*) Outside of	. QC límits .ke Rec. outside o	for calculation po	urposes

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: J78054 Account: EHTXF - Entact Houston Project: Chevroh, Perth Amboy

QC Batch ID: MP41826 Matrix Type: LEACHATE

(asr) Analyce not requested

Methods: SW846 6010B Units: mg/l

Prep Date:

12/05/07

Trop Date.			12/09/	07
MetaI	J77710-1 Original MSD	Spikelot MPITCLP1 % Rec	MSD RPD	QC Limit
Aluminum				
Antimony				
Arsenic	anr			
Barium	ánr			
Beryllium				
Cadmium	anr			
Calcium				
Chromium	anr			
Cobalt				
Copper				
Iron				
Lead	0.057 1.9	2.0 92.2	0.0	žS
Magnesium				
Manganese				
Molybdenum				
Nickel				
Palladium				
otassium				
Selenium	ans			
Silicon				
Silver	anr			
Sodium				
[hallium				
Pin				
/anadium				
Zinc				
Associated sa	mples MP41826: J	78054-1A, J78054-2A,	J78044-3	BA, £78054-4A
(*) Cutside o (N) Matrix Sp	are shown as ze f QC limits ike Rec. outside not requested	ro for calculation p of QC limits	urposes	

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMAPY

Login Number: J78054 Account: EHTXF + Entact Houston Project: Chevron, Perth Amboy

QC Batch ID: MP41826 Matrix Type: SEACHATE

(*) Outside of QC limits
(anr) Analyte not requested

Methods: SW846 6010B

Units: mg/l

Prep Date:

12/05/07

12/11/07

Metal	BSP Result	Spikelot MPITCLP1		ÇC Limits	£CS Result	Spikelot MPLCW2	F Rec	QC Limits
Alumanum			~ · · · · · · · · · · · · · · · · · · ·			·		
Antimony								
Arsenic	anr							
Baríum	anr							
Beryllium								
Cadmium	anr							
Calcium								
Chromium	anr							
Cobalt								
Copper								
Iron								
Lead	1.9	2.0	95.4	80+120	0,51	0.50	102.0	80-120
Magnesium								
Manganese								
Molybdenum								
Nıckel								
Palladıum								
Potassium								
Selenium	anr							
Silicon								
Silver	anr							
Bodíum								
Phallium								
?in								
Vanadium								
Zine								
issociated sam	ples MP41	826: j7805	64-1A, J7	8054+ZA, .	178054-3A	, J78054-4	A	
esults < 1DL	are shown	as zero f	or calcui	lation pu	tioses			

SERIAL DILUTION RESULTS SUMMARY

Login Number: J78054 Account: EHTXF - Entact Houseon Project: Chevron, Perth Amboy

QC Batch ID: MP41826 Matrix Type: LEACHATE

Methods: SW846 6010B

Units: ug/l

Prep Date:

12/05/07

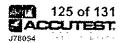
Metal	J77730-1 Oʻziginal SDL 1:5 P.PD	QC Limits
Aleminum		
Antimony		
Arsenic	änr	
Batium	anr	
Beryllium		
Cadmium	anr	
Calcium		
Chromium	ant	
Cobalt		
Copper		
Iron		
Lead	56.6 56.0 1.2	0~10
Magnesium		
Manganese		
Molybdenum		
Nickel		
Pailadium		
Potassium		
Selerium	anr	
Silicon		
Silver	anr	
Sadium		
Thallium		
Tín		
Vanadium		
Zinc		
Associated sam	nples MP41826: J78054-1A, J780	054-2A, 378054-3A, 378054-4A
Results < IDL (*) Outside of (asr) Analyte		ation purposes

BLANK RESULTS SHMMARY Part 2 - Method Blanks

Login Number: J78054 Account: EHTXF - Entact Houston Project: Chevron, Perth Amboy

QC Batch ID: MP42010 Matrix Type: SOLID

Methods: SW846 6010B Units: mg/kg


Prep Date:

12/21/07

Metal	RL	IDL	MB raw	fina1
Aluminum	20	1.3	anr	
Antimony	2.0	.1	anr	
Arsenic	2.0	.17	apr	
Barıum	20	.03	anr	
Beryllium	0.50	.01	anr	
Baran	10	.1		
Cadmium	0.50	.009	anr	
Calcium	500	1.4		
Chromium	1.0	.04	anr	
Cabalt	5.0	.03	anr	
Copper	2.5	.33	anr	
Iron	10	.21		
Lead	2.0	. 1	0.020	<2.0
Magnesium	500	2.2		
Manganese	1.5	.01	anr	
Molybdenum	2.0	.04		
Níckel	4.0	.03	ánr	
Palladium	5.0	,25		
Potassium	1006	5.3		
Selenium	2.0	. Z	anr	
Silicon	20	.26		
Silver	1.0	.05	ant	
Sodium	1000	1.4	G D Z	
Scrontium	1.0	.02		
Thallium			inr	
	1.0	.09	anr	
Titonym	5.0	.05		
Titanıum	1.0	.04		
Vanadium	5.0	.63	anr	
Zinc	2.0	.15	anr	

Associated samples MP42010: J78054-1, J78054-2, J18054-3, J78054-4

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: J78054 Account: EHTXF - Entact Houston Project: Chevron, Perth Amboy

QC Batch ID: MP42010 Matrix Type: SOLID

Methods: SW846 6010B Units: mg/kg

Prep Date:

12/21/07

Trop bacc.			12/21/07	
Mecal	J78673~8 Original MS	Spikelo: MPIRS]	t % Rec	QC Limits
Aluminum	anr			
Antimony	anr			
Arsenic	anr			
Barium	an.r			
Beryllium	anr			
Boron				
Cadmium	anr			
Calcium				
Chromium	anr			
Cobalt	anr			
Copper	anr			
Iron				
Lead	151 131	110	-18.2H(a	75-125
Magnesium				
Manganese	anr			
Molybdenum				
Nickel	anr			
Palladium				
Potassium				
Selenium	anr			
5[licon				
Silver	anr			
\$odium				
Strontium				
Thallium	anr			
Tin				
Titanium				
Vanadium	anı			
Zinc	anr			
Associated sa	mples MP42010: J	78054+1, J78	054∽2. ฦ⊤ัฅ	054-3. J78054-4

Associated samples MP42010: J78054-1, J78054-2, J78054-3, J78054-4

Results < TDL are shown as zero for calculation purposes

(*) Outside of QC limits

(*) Outside of QC limits(N) Matrix Spike Rec. outside of QC limits(anr) Analyte not requested(a) Spike recovery indicates possible matrix interference and/or sample nonhomogeneity.

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: JT8054 Account: EHTXF - Entact Houston Project: Chevron, Perth Amboy

QC Batch ID: MP42010 Matrix Type: SOLIL

Methods: SW846 6010B Units: mg/kg

Prep Date:

12/21/07

Metal	J786T3-8 Original MSD	Spikelot MPIRSl % Rec	MSB RPU	QC Limat	
Aluminum	anr	···			
stimony	ar.r				
Arsenic	anr				
Barium	anr				
Beryllium	anr				
Boron					
Cadmium	anr				
Calcium					
Chromium	zuz				
Cobalt	anr				
Copper	anr				
Iron					
Lead	151 12 <i>Ż</i>	111 -26.1N(a 7.1	Ž0	
Magnesium					
Manganese	anr				
Molybdenum					
Nickel	anr				
Pailadium					
Potassium					
Selenium	anr				
Silicon					
Silver	anr				
Sodium					
Stronsium					
Thallium	anr				
Tin					
Títanıum					
Vanadium	anr				
Zinc	anr				
Associated sa	mples MP42010: <i>J</i> 78	3054-1, <i>3</i> 78054-2, <i>3</i> 7	8054-31	J7805 4 +4	

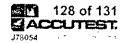
Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

(*) Outside of QC limits
(N) Matrix Spike Rec. outside of QC limits
(anr) Analyte not requested
(a) Spike recovery indicates possible matrix interference and/or sample nonhomogeneity.

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: J78054 Account: EHTXF ~ Entact Houston Project: Chevron, Perth Amboy

QC Batch ID: MP42010 Matrix Type: SOLID


Methods: SW846 6010B Units: mg/kg

Prep Date:

12/21/07

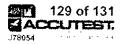
Metal	BSP Result	⊅pikelot MPIRS]	% Rec	QC Limits
Aluminum	anr		***	
Antimony	anr			
Arsenic	anr			
Barium	anr			
Beryllium	anr			
Boron				
Cadmium	anr			
Calcium				
Chromium	anr			
Cobalt	anr			
Copper	anr			
Iron				
Lead	103	100	163.0	80~120
Magnesium				
Manganese	anr			
Molybdenum				
Nickel	anr			
Paìladium				
Potassium				
Selenium	anr			
Silicon				
Silver	anr			
Sodium				
Strontium				
Thallium	anr			
Tin				
Titanium				
Vanadium	anr			
Zinc	anr			
Associated sam	ples MP47	010: J7865	4~1, J780	054~2, J78054~3, J78054~4
Pesulta < TOI				

Results < IOL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

SERTAL DILUTION RESULTS SUMMARY

Login Number: J78054 Account: ESTXF - Entact Houston Project: Chevron, Perth Amboy

QC Batch ID: MP42010 Matrix Type: SOLID Methods: SW846 6010B Units: ug/l


Prep Date:

12/21/07

Metal,	J78673-8 Original SDL 1:5	RPD	QC Limits
Aluminum	anr		
Antimony	anr		
Arsenic	anr		
Barium	anr		
8er y llium	anr		
Boron			
Cadmium	anr		
Calcium			
Chromium	anr		
Cobalt	anr		
Соррег	anr		
1ron			
Lead	1400 1490	7.0	0-10
Magnesium			
Manganese	anr		
Molybdenum			
Nickel	anr		
Palladium			
Potassium			
Selenium	anr		
Silicon			
Silver	anr		
Sodium			
Strantium			
Thallium	anr		
Tín			
Titanium			
Vanadium	anr		
Zínc	anr		
Associated sam	ples MP42010: J78054	-1, J700	54-2, J78054-3, J78054-4
Results < IDL	are shown as zero fo	r calcul	ation purposes

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

(anr) Analyte not requested

General Chemistry	 	
QC Data Summaries		
	 	····

Includes the following where applicable:

• Percent Solids Raw Data Summary

Project: Chevron, Perth Amboy

Sample: J78054-1 ClientID: S1016-RAW	Analyzed: 07-DEC-07 by TS	Method: EPA 160.3 M
Wet Weight (Total)	27.34 g	
Tare Weight	21.14 g	
Dry Weight (Total)	24.61 g	
Solids, Percent	56 %	
Sample: J78054-2 ClientID: S2249-RAW	Analyzed: 07-DEC-07 by TS	Method: EPA 160.3 M
Wet Weight (Total)	28.83 g	
Tare Weight	21.43 g	
Dry Weight (Total)	25.99 g	
Solids, Percent	61.6 %	
Sample: J78054-3 ClientID: S2387-RAW	Analyzed: 07-DEC-07 by TS	Method: EPA 160.3 M
Wet Weight (Total)	31.17 g	
Tare Weight	21.26 g	
Dry Weight (Total)	28.36 g	
Solids, Percent	71.6 %	
Sample: J78054-4 ClientID: S2197-RAS	Analyzed: 07-DEC-07 by TS	Method: EPA 160.3 M
Wet Weight (Total)	25.84 g	
Tare Weight	19.61 g	
Dry Weight (Total)	25.38 g	
Solids, Percent	92.6 %	

Page 1 of 1

04/08/08

Technical Report for

Entact Houston

Chevron, Perth Amboy

CVX 108

Accutest Job Number: J85904

Sampling Date: 03/13/08

Report to:

Entact Houston 699 South Friendswood Suite 100 Friendswood, TX 77546

ATTN: Mike Porter

Total number of pages in report: 201

APR 1 1 2008

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Client Service contact: Nadine Yakes 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, DE, FL, IL, IN, KS, KY, LA, MA, MD, M1, MT, NC, PA, R1, SC, TN, VA, WV

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

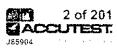
Vincent J. Pugliese

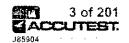
President

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary	4
Section 3: Sample Results	
3.1: J85904-1: S2197RB2	
3.2: J85904-1A: S2197RB2	
3.3: J85904-2: S2387RF4	
3.4: J85904-2A: S2387RF4	16
Section 4: Misc. Forms	
4.1: Chain of Custody	18
4.2: Sample Tracking Chronicle	19
4.3: Internal Chain of Custody	20
Section 5: GC/MS Volatiles - QC Data Summaries	
5.1: Method Blank Summary	
5.2: Blank Spike Summary	
5.3: Matrix Spike/Matrix Spike Duplicate Summary	34
5.4: Instrument Performance Checks (BFB)	39
5.5: Internal Standard Area Summaries	44
5.6: Surrogate Recovery Summaries	
5.7: Initial and Continuing Calibration Summaries	48
Section 6: GC/MS Volatiles - Raw Data	
6.1: Samples	
6.2: Method Blanks	84
Section 7: Metals Analysis - QC Data Summaries	
7.1: Inst QC MA20663: Pb	91
7.2: Inst QC MA20673: Pb	
7.3: Inst QC MA20680: Pb	145
7.4: Inst QC MA20693: Pb	169
7.5: Prep QC MP43029: Pb	189
	194
	200
8.1: Percent Solids Raw Data Summary	201




Sample Summary

Entact Houston

Job No: J85904

Chevron, Perth Amboy Project No: CVX 108

Sample Number	Collected Date	Time By	M Received Co	atrix ode Type	Client Sample ID	
J85904-1	03/13/08	15:10 MP	03/15/08 SC) Soil	S2197RB2	
J85904-1A	03/13/08	15:10 MP	03/15/08 SO) Soil	S2197RB2	
J85904-2	03/13/08	15:10 MP	03/15/08 SC) Soil	S2387RF4	
J85904-2A	03/13/08	15:10 MP	03/15/08 SC) Soil	S2387RF4	

CASE NARRATIVE / CONFORMANCE SUMMARY

Client: Entact Houston Job No J85904

Site: Chevron, Perth Amboy Report Date 4/8/2008 3:41:25 PM

On 03/15/2008, 2 Sample(s), 0 Trip Blank(s) and 0 Field Blank(s) were received at Accutest Laboratories at a temperature of 4.8 C. Samples were intact and properly preserved, unless noted below. An Accutest Job Number of J85904 was assigned to the project. Laboratory sample 1D, client sample 1D and dates of sample collection are detailed in the report's Results Summary Section.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Volatiles by GCMS By Method SW846 8260B

Matrix: SO Batch ID: V1C2071

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) J86562-3MS, J86562-3MSD were used as the QC samples indicated.
- J85904-2: Dilution required due to matrix interference.

Matrix: SO Batch ID: V1C2073

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) J86628-1MS, J86628-1MSD were used as the QC samples indicated.

Matrix: SO Batch ID: VG5270

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) J86058-1MS, J86058-1MSD were used as the QC samples indicated.
- Blank Spike Recovery(s) for Chlorobenzene, trans-1,2-Dichloroethene are outside control limits.
- RPD(s) for MSD for Acetone are outside control limits for sample J86058-1MSD. Probable cause due to matrix interference.
- VG5270-BS for Chlorobenzene; High percent recoveries and no associated positive found in the QC batch.
- VG5270-BS for trans-1,2-Dichloroethene: High percent recoveries and no associated positive found in the QC batch.

N

Metals By Method SW846 6010B

Matrix: LEACHATE Batch ID: MP43029

- All samples were digested within the recommended method holding time.
- * All samples were analyzed within the recommended method holding time.
- * All method blanks for this batch meet method specific criteria.
- Sample(s) J85287-137AMS, J85287-137AMSD, J85287-137ASDL were used as the QC samples for metals.
- RPD(s) for Serial Dilution for Lead are outside control limits for sample MP43029-SD1. Percent difference acceptable due to low initial sample concentration (< 50 times IDL).

Matrix: SO Batch ID: MP43042

- * All samples were digested within the recommended method holding time.
- * All samples were analyzed within the recommended method holding time.
- * All method blanks for this batch meet method specific criteria.
- Sample(s) J86496-1MSD, J86496-1SDL, J86496-1MS were used as the QC samples for metals.
- Matrix Spike Recovery(s) for Lead are outside control limits. Spike recovery indicates possible matrix interference and/or sample nonhomogeneity.

Wet Chemistry By Method EPA 160.3 M

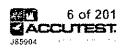
Matrix: SO Batch ID: GN13388

The data for EPA 160.3 M meets quality control requirements.

Accutest certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting Accutest's Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

Accutest Laboratories is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by Accutest Laboratories indicated via signature on the report cover



Sample Results		
Report of Analysis		

Report of Analysis

Page 1 of 2

Client Sample ID: S2197RB2

Lab Sample ID: Matrix: Method:

Project:

J85904-1 SO - Soil

SW846 8260B

Date Sampled: 03/13/08 Date Received: 03/15/08 Percent Solids: 89.1

Chevron, Perth Amboy

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	G108730.D	1	03/27/08	SJM	n/a	n/a	VG5270
Run #2	1C49733.D	1	03/27/08	MAH	n/a	n/a	V1C2073

	Initial Weight	Final Volume	Methanol Aliquot
Run #1	0.58 g		
Run #2	10.0 g	10.0 ml	100 ul

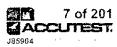
VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units Q
67-64-1	Acetone	ND	97	41	ug/kg
71-43-2	Benzene	ND	9.7	7.2	ug/kg
75-27-4	Bromodichloromethane	ND	48	2.5	ug/kg
75-25-2	Bromoform	ND	48	8.1	ug/kg
74-83-9	Bromomethane	ND	48	4.8	ug/kg
78-93-3	2-Butanone (MEK)	ND	97	28	ug/kg
75-15-0	Carbon disulfide	ND	48	2.9	ug/kg
56-23-5	Carbon tetrachloride	ND	48	2.5	ug/kg
108-90-7	Chlorobenzene	ND	48	5.5	ug/kg
75-00-3	Chloroethane	ND	48	5.1	ug/kg
67-66-3	Chloroform	ND	48	3.9	ug/kg
74-87-3	Chloromethane	ND	48	5.2	ug/kg
124-48-1	Dibromochloromethane	ND	48	2.1	ug/kg
75-34-3	1,1-Dlchloroethane	ND	48	6.9	ug/kg
107-06-2	1,2-Dichloroethane	ND	9.7	2.3	ug/kg
75-35-4	1,1-Dlchloroethene	ND	48	4.6	ug/kg
156-59-2	cis-1,2-Dichloroethene	ND	48	1.9	ug/kg
156-60-5	trans-1,2-Dichloroethene	ND	48	5.5	ug/kg
540-59-0	1,2-Dichloroethene (total)	ND	48	1.9	ug/kg
78-87-5	1,2-Dichloropropane	ND	48	4.1	ug/kg
10061-01-5	cis-1,3-Dichloropropene	ND	48	5.0	ug/kg
10061-02-6	trans-1,3-Dichloropropene	ND	48	8.0	ug/kg
100-41-4	Ethylbenzene	97.3	9.7	4.8	ug/kg
591-78-6	2-Hexanone	ND	48	17	ug/kg
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	48	20	ug/kg
75-09-2	Methylene chloride	97.1	48	4.7	ug/kg
100-42-5	Styrene	ND	48	2.3	ug/kg
79-34-5	1,1,2,2-Tetrachloroethane	ND	48	2.9	ug/kg
127-18-4	Tetrachloroethene	ND	48	3.3	ug/kg
108-88-3	Toluene	94.9	9.7	4.2	ug/kg
71-55-6	1,1,1-Trichloroethane	ND	48	3.7	ug/kg
79-00-5	1,1,2-Trichloroethane	ND	48	2.9	ug/kg

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit


E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 2 of 2

Client Sample ID: S2197RB2

Lab Sample ID: Matrix: Method: J85904-1 SO - Soil

SW846 8260B

Date Sampled: 03/13/08 Date Received: 03/15/08 Percent Solids: 89.1

Project: Chevron, Perth Amboy

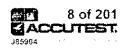
VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
79-01-6 75-01-4 1330-20-7	Trichloroethene Vinyl chloride Xylene (total)	ND ND 1790 ^a	48 48 120	3.2 5.5 16	ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	84% 85% 89% 134%	93% 91% 94% 95%	68-17 59-13 75-17 65-14	36% 23%	

(a) Result is from Run# 2

ND = Not detected RL = Reporting Limit

E = Indicates value exceeds calibration range


MDL - Method Detection Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sample ID: S2197RB2

Lab Sample ID:

J85904-1

Date Sampled: Date Received: 03/15/08

03/13/08

Matrix: SO - Soil

Percent Solids:

89.1

Project:

Chevron, Perth Amboy

Metals Analysis

Analyte RLResult Units DF Prep Analyzed By Method Prep Method

1070 Lead 2.2 04/01/08 04/02/08 ND mg/kg 1 SW846 6010B ¹ SW846 3050B ²

(1) Instrument QC Batch: MA20680

(2) Prep QC Batch: MP43042

Report of Analysis

Page 1 of 1

Client Sample ID: S2197RB2 Lab Sample ID:

J85904-1

SO - Soil

Date Sampled: Date Received:

03/13/08 03/15/08

Percent Solids:

89.1

Project:

Analyte

Matrix:

Chevron, Perth Amboy

General Chemistry

Result

RLUnits DF

1

Analyzed

Ву Method

Moisture, Percent

10.9

%

04/01/08

TS

EPA 160.3 M

Report of Analysis

Page 1 of 1

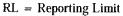
Client Sample 1D: S2197RB2

Lab Sample ID: Matrix:

J85904-1A SO - Soil

Date Sampled: 03/13/08

Project:


Chevron, Perth Amboy

Date Received: 03/15/08 Percent Solids: 89.1

Metals Analysis, TCLP Leachate SW846 1311

Analyte Result HW# MCL RL Units DF Prep Analyzed By Method Prep Method Lead 11.7 D008 5.0 03/27/08 04/01/08 ND SW846 6010B 1 SW846 3010A 2 0.50mg/l 1

(1) Instrument QC Batch: MA20673 (2) Prep QC Batch: MP43029

Report of Analysis

Page 1 of 2

Client Sample ID: S2387RF4 Lab Sample ID: J85904-2

Matrix: Method: SO - Soil

SW846 8260B

DF

1

Date Sampled: Date Received:

03/13/08 03/15/08

Percent Solids: 74.8

Project: Chevron, Perth Amboy

File ID 1C49690.D Run #1 a

Analyzed 03/26/08

Prep Date MAH n∕a

Prep Batch

Analytical Batch V1C2071

n/a

Run #2

Initial Weight Run #1 9.7 g

Final Volume 10.0 ml

Methanol Aliquot

Ву

10.0 ul

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	8600	3600	ug/kg	
71-43-2	Benzene	7590	860	640	ug/kg	
75-27-4	Bromodichloromethane	ND	4300	220	ug/kg	
75-25-2	Bromoform	ND	4300	720	ug/kg	
74-83-9	Bromomethane	ND	4300	430	ug/kg	
78-93-3	2-Butanone (MEK)	ND	8600	2500	ug/kg	
75-15-0	Carbon disulfide	ND	4300	260	ug/kg	
56-23-5	Carbon tetrachloride	ND	4300	220	ug/kg	
108-90-7	Chlorobenzene	ND	4300	490	ug/kg	
75-00-3	Chloroethane	ND	4300	460	ug/kg	
67-66-3	Chloroform	ND	4300	350	ug/kg	
74-87-3	Chloromethane	ND	4300	460	ug/kg	
124-48-1	Dibromochloromethane	ND	4300	180	ug/kg	
75-34-3	1,1-Dichloroethane	ND	4300	610	ug/kg	
107-06-2	1,2-Dichloroethane	ND	860	210	ug/kg	
75-35-4	1,1-Dichloroethene	ND	4300	410	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	4300	170	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	4300	490	ug/kg	
540-59-0	1,2-Dichloroethene (total)	ND	4300	170	ug/kg	
78-87-5	1,2-Dichloropropane	ND	4300	360	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	4300	440	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	4300	710	ug/kg	
100-41-4	Ethylbenzene	26800	860	420	ug/kg	
591-78-6	2-Hexanone	ND	4300	1500	ug/kg	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	4300	1700	ug/kg	
75-09-2	Methylene chloride	ND	4300	410	ug/kg	
100-42-5	Styrene	ND	4300	200	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	4300	260	ug/kg	
127-18-4	Tetrachloroethene	ND	4300	290	ug/kg	
108-88-3	Toluene	76500	860	370	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	4300	330	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	4300	260	ug/kg	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 2 of 2

Client Sample ID: S2387RF4 Lab Sample ID:

J85904-2

Date Sampled:

03/13/08

Matrix: Method: SO - Soil SW846 8260B Date Received: 03/15/08 Percent Solids: 74.8

Project:

Chevron, Perth Amboy

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
79-01-6 75-01-4 1330-20-7	Trichloroethene Vinyl chloride Xylene (total)	ND ND 185000	4300 4300 1700	280 490 230	ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	92% 89% 96% 92%		68-1 59-1 75-1 65-1	36% 23%	

(a) Dilution required due to matrix interference.

ND = Not detected

RL = Reporting Limit E = Indicates value exceeds callbration range

MDL - Method Detection Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sample ID: S2387RF4

Lab Sample ID: J85904-2 Matrix:

SO - Soil

Date Sampled: 03/13/08 Date Received: 03/15/08

Percent Solids: 74.8

Project:

Chevron, Perth Amboy

Metals Analysis

Analyte Result RLUnits DF Prep Analyzed By Method Prep Method SW846 6010B ¹ Lead 142000 130 mg/kg 50 04/01/08 04/02/08 ND SW846 3050B ²

(1) Instrument QC Batch: MA20680 (2) Prep QC Batch: MP43042

Report of Analysis

Page 1 of 1

Client Sample ID: S2387RF4

Lab Sample ID: Matrix: J85904-2 SO - Soil

Project:

Chevron, Perth Amboy

Date Sampled: 03/13/08 Date Received: 03/15/08 Percent Solids: 74.8

General Chemistry

Analyte Result RL Units DF Analyzed By Method

Moisture, Percent 25.2 % 1 04/01/08 TS EPA 160.3 M

Report of Analysis

Page 1 of 1

Client Sample ID: S2387RF4

Lab Sample ID: J85904-2A Matrix: SO - Soil Date Sampled: 03/13/08 Date Received: 03/15/08 Percent Solids: 74.8

Project: Chevron, Perth Amboy

Metals Analysis, TCLP Leachate SW846 1311

HW# MCL RL Units DF Prep Analyzed By Method Prep Method Analyte Result SW846 6010B ¹ SW846 3010A ² 03/27/08 04/03/08 ND 1240 D008 5.0 63 mg/l 125 Lead

(1) Instrument QC Batch: MA20693(2) Prep QC Batch: MP43029

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- Chain of Custody Sample Tracking Chronicle Internal Chain of Custody

4.
4

C	COMPANY INFORMATION	15-		PROJECT	NEORMATION	,	1	HEQUESTED ANALYSIS/METHOD									
OCATION ENT	ACT HOUSTON		PROJECT	CVX 10	08 ,		1										
TTN Mike	a Porter			BILLING I	NFORMATION	-24	1							İ		J85	90X/
ODRESS 699	S. Friendswood, Suite 1	00	BILL TO	Direct I	Bill Chevr		ω							l		705	707
Frie	ndswood, TX 77546		ADDRESS				CONTAINERS										
*HONE 281-9	96-9892		PHONE				8					題				1.1	
AX 281-9	96-9888		FAX	1	Por		EE B	æ	£	ء	8	Moisture Contern					
SAMPLE NO	SAMPLE DESCRIPTION	SAMPLE	SAMPLE	/SAMPLE MATRIX	CONTACTE	PRESERV	72	108	₹CLP	TEL PO	Total VOC	₹ tso				COMMENTS	
2197RB2	Soil contaminated with petroleum product	3/13/07	15:10	Soil	Plastic Bilg	lce	1	х	X	x	х	х	+	1	Δ	155	
57387RF4 *	Soil contaminated with petroleum product	3/13/07	15:10	So#	Plastic Beg	læ	1	x	х	х	х	х	+	2	Δ	15A	1 ./-
MB) F		4 /-7															
					-	ļ	-		ļ 					_			
			 			-	+-				-		-			ortoproces	M.PONTOT
		_	_ 		1	 	+	-	-	 	-						
					-	 	+-			-			+			A No spout	LAO NOI.
	 		-	-	 		\dagger			-	-	-		-		*labed "s	ວ 3 ¢⊃ຂ⊆ປຶ
,			<u> </u>		 	 	+	<u> </u>					-	1		AKI 4 CO-CO	*** /CT7
SAMPLER	M. Porter		SHIPMENT	FEDI	EX	<u> </u>		-	Τ.	AIRBI		T					1180
REQUIRED TURI	NAROUND □ SAME DA	Y □ 24 HO	URS 🗀 48	HOURS	☐ 72 HO R	☐ 5 DAY	/S	<u> </u>	DAY:	s D	⊠ RO	UTINE		SHTC	:R:_		720
1. RELINQUISHE	DBY ş	DATE	2, RELINCA	ASHED BY		,		DAT	E			LINGU	SHED	BY		·	DATE
	Pan	3/15/08	SKAPATURE	*	al N						BIGHATI						
PHINTED HANG-COMPANY	PORTER LEMACT	16:00	PRINTED HAMEO	3/15	708							NAME CO					
1. RECEIVED BY	f 2.	DATE	2. RECEIVE	D BY	1	19	5	DATI	E		3. RE	CEIVE	D BY				DATE
PAINTED HOUSE COMPANY	1911		PHINTED NAME C	JU JU	lakon							NAME/CO	MOANIY				
					3/48	1015					. ranted						

J85904: Chain of Custody Page 1 of 1

Internal Sample Tracking Chronicle

Entact Houston

Job No:

J85904

Chevron, Perth Amboy Project No: CVX 108

Sample Number	Method	Analyzed	Ву	Prepped	Ву	Test Codes
J85904-1 S2197RB2	Collected: 13-MAR-08	15:10 By: MP	Receiv	ed: 15-MAR	R-08 B	y: MPC
J85904-1	SW846 8260B	27-MAR-08 14:20	_			V8260TCL
J85904-1	SW846 8260B	27-MAR-08 17:34				V8260TCL %MOIST
J85904-1 J85904-1	EPA 160.3 M SW846 6010B	01-APR-08 02-APR-08 01:34	TS ND	01-APR-08	TG	PB
J85904-2 S2387RF4	Collected: 13-MAR-08	15:10 By: MP	Receiv	ved: 15-MAR	R-08 B	y: MPC
J85904-2	SW846 8260B	26-MAR-08 18:32	MAH			V8260TCL
J85904-2	EPA 160.3 M	01-APR-08	TS			%MO1ST
J85904-2	SW846 6010B	02-APR-08 01:40	ND	01-APR-08	TG	PB
	Collected: 13-MAR-08				R-08 B	y: MPC
Scrainde		` .				
J85904-1A	SW846 6010B	01-APR-08 00:56	ND	27-MAR-08	3 TG	EPB
	Collected: 13-MAR-08				R-08 B	
S2387RF4				-		
J85904-2A	SW846 6010B	03-APR-08 15:29	ND	27-MAR-08	3 TG	EPB

Accutest Internal Chain of Custody
Job Number: J85904
Account: EHTXF Entact Houston
Project: Chevron, Perth Amboy
Received: 03/15/08

Sample. Bottle	Transfer	Transfer		_
Number	FROM	ТО	Date/Time	Reason
J85904-1.1	Secured Storage	Jayna Patel	03/17/08 12:10	Retrieve from Storage
J85904-1.1	Jayna Patel	Secured Storage	03/17/08 12:19	Return to Storage
J85904-1.1	Secured Storage	Erik Moody	03/26/08 08:20	Retrieve from Storage
J85904-1.1	Erik Moody	Matthew Brennan	03/26/08 08:21	Custody Transfer
J85904-1.1	Matthew Brennan	Elizabeth Medina-Gray	03/26/08 13:17	Custody Transfer
J85904-1.1	Elizabeth Medina-Gray	Secured Storage	03/26/08 14:31	Return to Storage
J85904-1.1	Secured Storage	Scott McGonigal	03/27/08 11:16	Retrieve from Storage
J85904-1.1	Scott McGonigal	Secured Storage		Return to Storage
J85904-1.1	Secured Storage	Todd Shoemaker		Retrieve from Storage
J85904-1.1	Todd Shoemaker	Teresa Guziak	03/28/08 08:09	Custody Transfer
J85904-1.1	Teresa Guziak	Secured Storage		Return to Storage
J85904-1.1	Secured Storage	Erik Moody		Retrieve from Storage
J85904-1.1	Erik Moody	Rie 1wasaki		Custody Transfer
J85904-1.1	Rie Iwasaki	Secured Storage		Return to Storage
J85904-1.1.1	Matthew Brennan	TCLP	03/26/08 10:43	Leachate from J85904-1.1
J85904-1.1.1	TCLP	Matthew Brennan		Leachate from J85904-1.1
J85904-1.1.1	Matthew Brennan	Secured Storage		Return to Storage
J85904-1.1.1	Secured Storage	Teresa Guziak		Retrieve from Storage
J85904-1.1.1	Teresa Guziak	Secured Storage		Return to Storage
J85904-1.1.2	Teresa Guziak	Metals Digestion	03/27/08 13:25	Digestate from J85904-1.1.
J85904-1.1.2	Metals Digestion	Teresa Guziak		Digestate from J85904-1.1.
J85904-1.1.2	Teresa Guziak	Metals Digestate Storage		Return to Storage
J85904-1.1.3	Teresa Guziak	Metals Digestion	03/28/08 10:59	Digestate from J85904-1.1
J85904-1.1.3	Metals Digestion	Teresa Guziak		Digestate from J85904-1.1
J85904-1.1.3	Teresa Guziak	Metals Digestate Storage	93/28/ 08 13:04	Return to Storage
J85904-1.1.3	Metals Digestate Storage	Veronica Chandra		Retrieve from Storage
J85904-1.1.3	Veronica Chandra	Metals Digestate Storage		Return to Storage
J85904-1.1.3	Metals Digestate Storage	Rakesh Pathak		Retrieve from Storage
J85904-1.1.3	Rakesh Pathak	Metals Digestate Storage		Return to Storage
J85904-1.1.3	Metals Digestate Storage	Deepa Muralidharan		Retrieve from Storage
J85904-1.1.3	Deepa Muralidharan	Metals Digestate Storage		Return to Storage
J85904-1.1.4	Rie Iwasaki	Joshua Frenkel	04/01/08 11:01	Aliquot from J85904-1.1
J85904-1.1.4	Joshua Frenkel	Joodan 1 Tollinor	04/01/08 12:39	
J85904-1.2	Secured Storage	Jayna Patel	03/17/08 12:10	Retrieve from Storage
J85904-1.2	Jayna Patel	Secured Storage		Return to Storage
J85904-1.3	Secured Storage	Jayna Patel	03/17/08 12-10	Retrieve from Storage
J85904-1.3	Jayna Patel	Secured Storage		Return to Storage
g = 000 x \$10	gagam a usus	Secured Divings	00/11/00 12.13	Actual to Morage

Accutest Internal Chain of Custody
Job Number: J85904
Account: EHTXF Entact Houston
Project: Chevron, Perth Amboy
Received: 03/15/08

Sample.Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason
J85904-1.4	Secured Storage	Jayna Patel	03/17/08 12:10	Retrieve from Storage
J85904-1.4	Jayna Patel	Secured Storage	03/17/08 12:19	Return to Storage
J85904-2.1	Secured Storage	Jayna Patel	03/17/08 12:10	Retrieve from Storage
J85904-2.1	Jayna Patel	Secured Storage	03/17/08 12:19	Return to Storage
J85904-2.1	Secured Storage	Erik Moody	03/26/08 08:20	Retrieve from Storage
J85904-2.1	Erik Moody	Matthew Brennan	03/26/08 08:21	Custody Transfer
J85904-2.1	Matthew Brennan	Elizabeth Medina-Gray	03/26/08 13:17	Custody Transfer
J85904-2.1	Elizabeth Medina-Gray	Secured Storage	03/26/08 14:31	Return to Storage
J85904-2.1	Secured Storage	Todd Shoemaker	03/28/08 08:08	Retrieve from Storage
J85904-2.1	Todd Shoemaker	Teresa Guziak	03/28/08 08:09	Custody Transfer
J85904-2.1	Teresa Guziak	Secured Storage	03/28/08 11:01	Return to Storage
J85904-2.1	Secured Storage	Erik Moody	04/01/08 08:46	Retrieve from Storage
J85904-2.1	Erik Moody	Rie Iwasaki	04/01/08 08:48	Custody Transfer
J85904-2.1	Rie Iwasaki	Secured Storage	04/01/08 16:09	Return to Storage
J85904-2.1.1	Matthew Brennan	TCLP	03/26/08 10:43	Leachate from J85904-2.1
J85904-2.1.1	TCLP	Matthew Brennan	03/27/08 08:41	Leachate from J85904-2.1
J85904-2.1.1	Matthew Brennan	Secured Storage	03/27/08 08:42	Return to Storage
J85904-2.1.1	Secured Storage	Teresa Guziak	03/27/08 13:23	Retrieve from Storage
J85904-2.1.1	Teresa Guziak	Secured Storage	03/27/08 14:57	Return to Storage
J85904-2.1.2	Teresa Guziak	Metals Digestion	03/27/08 13:25	Digestate from J85904-2.1.
J85904-2.1.2	Metals Digestion	Teresa Guziak		Digestate from J85904-2.1.
J85904-2.1.2	Teresa Guziak	Metals Digestate Storage		Return to Storage
J85904-2.1.3	Teresa Guziak	Metals Digestion	03/28/08 10:59	Digestate from J85904-2.1
J85904-2.1.3	Metals Digestion	Teresa Guziak		Digestate from J85904-2.1
J85904-2.1.3	Teresa Guziak	Metals Digestate Storage		Return to Storage
J85904-2.1.3	Metals Digestate Storage	Veronica Chandra		Retrieve from Storage
J85904-2.1.3	Veronica Chandra	Metals Digestate Storage	03/28/08 16:35	Return to Storage
J85904-2.1.3	Metals Digestate Storage	Rakesh Pathak	03/28/08 18:08	Retrieve from Storage
J85904-2.1.3	Rakesh Pathak	Metals Digestate Storage	03/28/08 18:29	Return to Storage
J85904-2.1.3	Metals Digestate Storage	Deepa Muralidharan	04/02/08 13:10	Retrieve from Storage
J85904-2.1.3	Deepa Muralidharan	Metals Digestate Storage		Return to Storage
J85904-2.1.4	Rie Iwasaki	Joshua Frenkel	04/01/08 11:01	Aliquot from J85904-2.1
J85904-2.1.4	Joshua Frenkel	-	04/01/08 12:39	-
J85904-2.2	Secured Storage	Jayna Patel	03/17/08 12:10	Retrieve from Storage
J85904-2.2	Jayna Patel	Secured Storage		Return to Storage
J85904-2.3	Secured Storage	Jayna Patel	03/17/08 12:10	Retrieve from Storage
J85904-2.3	Jayna Patel	Secured Storage		Return to Storage

Accutest Internal Chain of Custody
Job Number: J85904
Account: EHTXF Entact Houston
Project: Chevron, Perth Amboy Project: Received:

03/15/08

Sample, Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason
J85904-2.4	Secured Storage	Jayna Patel		Retrieve from Storage
J85904-2.4	Jayna Patel	Secured Storage		Return to Storage

Page 3 of 3

GC/MS Volatiles

5

QC Data Summaries

.....

Includes the following where applicable:

- · Method Blank Summaries
- · Blank Spike Summaries
- · Matrix Spike and Duplicate Summaries
- Instrument Performance Checks (BFB)
- Internal Standard Area Summaries
- Surrogate Recovery Summaries
- · Initial and Continuing Calibration Summaries

EHTXF Entact Houston Account: Project: Chevron, Perth Amboy

Analytical Batch V1C2071 Sample Prep Date Prep Batch File ID DF Analyzed Ву 03/26/08 MAH V1C2071-MB 1C49676.D 1 n/a n/a

The QC reported here applies to the following samples:

Method: SW846 8260B

J85904-2

CAS No.	Compound	Result	RL	MDL	Units Q
67-64-1	Acetone	ND	500	210	ug/kg
71-43-2	Benzene	ND	50	37	ug/kg
75-27-4	Bromodichloromethane	ND	250	13	ug/kg
75-25-2	Bromoform	ND	250	42	ug/kg
74-83-9	Bromomethane	ND	250	25	ug/kg
78-93-3	2-Butanone (MEK)	ND	500	140	ug/kg
75-15-0	Carbon disulfide	ND	250	15	ug/kg
56-23-5	Carbon tetrachloride	ND	250	13	ug/kg
108-90-7	Chlorobenzene	ND	250	29	ug/kg
75-00-3	Chloroethane	ND	250	27	ug/kg
67-66-3	Chloroform	ND	250	20	ug/kg
74-87-3	Chloromethane	ND	250	27	ug/kg
124-48-1	Dibromochloromethane	ND	250	11	ug/kg
75-34-3	1,1-Dichloroethane	ND	250	35	ug/kg
107-06-2	1,2-Dichloroethane	ND	50	12	ug/kg
75-35-4	1,1-Dichloroethene	ND	250	24	ug/kg
156-59-2	cis-1,2-Dichloroethene	ND	250	9.9	ug/kg
156-60-5	trans-1,2-Dlchloroethene	ND	250	28	ug/kg
540-59-0	1,2-Dichloroethene (total)	ND	250	9.9	ug/kg
78-87-5	1,2-Dichloropropane	ND	250	21	ug/kg
10061-01-5	cis-1,3-Dichloropropene	ND	250	26	ug/kg
10061-02-6	trans-1,3-Dichloropropene	ND	250	41	ug/kg
100-41-4	Ethylbenzene	ND	50	25	ug/kg
591-78-6	2-Hexanone	ND	250	89	ug/kg
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	250	100	ug/kg
75-09-2	Methylene chloride	ND	250	24	ug/kg
100-42-5	Styrene	ND	250	12	ug/kg
79-34-5	1,1,2,2-Tetrachloroethane	ND	250	15	ug/kg
127-18-4	Tetrachloroethene	ND	250	17	ug/kg
108-88-3	Toluene	ND	50	22	ug/kg
71-55-6	1,1,1-Trichloroethane	ND	250	19	ug/kg
79-00-5	1,1,2-Trichloroethane	ND	250	15	ug/kg
79-01-6	Trichloroethene	ND	250	17	ug/kg
75-01-4	Vinyl chloride	ND	250	28	ug/kg
1330-20-7	Xylene (total)	ND	100	13	ug/kg

Page 1 of 2

Account: **EHTXF Entact Houston** Project: Chevron, Perth Amboy

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch	
V1C2071-MB	1C49676.D	1	03/26/08	MAH	n/a	n/a	V1C2071	

The QC reported here applies to the following samples:

Method: SW846 8260B

J85904-2

CAS No.	Surrogate Recoveries		Limits			
	Dibromofluoromethane 92% 1,2-Dichloroethane-D4 90% Toluene-D8 93% 4-Bromofluorobenzene 99%		68-123% 59-136% 75-123% 65-140%			
CAS No.	Tentatively Identified Comp	pounds	R.T.	Est. Conc.	Units	Q
	Total TIC, Volatile			0	ug/kg	

Page 2 of 2

EHTXF Entact Houston Account: Chevron, Perth Amboy Project:

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
V1C2073-MB	1C49720.D	1	03/27/08	MAH	n/a	n/a	V1C2073

The QC reported here applies to the following samples:

Method: SW846 8260B

J85904-1

CAS No.	Compound	Result	RL	MDI	. Units	Q	
1330-20-7	Xylene (total)	ND	100	13	ug/kg		
CAS No.	Surrogate Recoveries		Limits				
1868-53-7	Dibromofluoromethane	93%	68-123	, 0			
17060-07-0	1,2-Dichloroethane-D4	97%	59-136	%			
2037-26-5	Toluene-D8	94%	75-123	%			
460-00-4	4-Bromofluorobenzene	100%	65-140	%			
CAS No.	Tentatively Identified Comp	oounds	R.T.	F	Est. Conc.	Units	Q
	Total TIC, Volatile			()	ug/kg	

Page 1 of 1

Page 1 of 2

Job Number:

J85904

Account: Project: EHTXF Entact Houston Chevron, Perth Amboy

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VG5270-MB1	G108725.D	1	03/27/08	SJM	n/a	n/a	VG5270

The QC reported here applies to the following samples:

Method: SW846 8260B

CAS No.	Compound	Result	RL	MDL	Units Q
67-64-1	Acetone	ND	10	4.2	ug/kg
71-43-2	Benzene	ND	1.0	0.74	ug/kg
75-27-4	Bromodichloromethane	ND	5.0	0.26	ug/kg
75-25-2	Bromoform	ND	5.0	0.84	ug/kg
74-83-9	Bromomethane	ND	5.0	0.50	ug/kg
78-93-3	2-Butanone (MEK)	ND	10	2.9	ug/kg
75-15-0	Carbon disulfide	ND	5.0	0.30	ug/kg
56-23-5	Carbon tetrachloride	ND	5.0	0.26	ug/kg
108-90-7	Chlorobenzene	ND	5.0	0.57	ug/kg
75-00-3	Chloroethane	ND	5.0	0.53	ug/kg
67-66-3	Chloroform	ND	5.0	0.41	ug/kg
74-87-3	Chloromethane	ND	5.0	0.54	ug/kg
124-48-1	Dibromochloromethane	ND	5.0	0.22	ug/kg
75-34-3	1,1-Dichloroethane	ND	5.0	0.71	ug/kg
107-06-2	1,2-Dichloroethane	ND	1.0	0.24	ug/kg
75-35-4	1,1-Dichloroethene	ND	5.0	0.48	ug/kg
156-59-2	cis-1,2-Dichloroethene	ND	5.0	0.20	ug/kg
156-60-5	trans-1,2-Dichloroethene	ND	5.0	0.57	ug/kg
540-59-0	1,2-Dichloroethene (total)	ND	5.0	0.20	ug/kg
78-87-5	1,2-Dichloropropane	ND	5.0	0.42	ug/kg
10061-01-5	cis-1,3-Dichloropropene	ND	5.0	0.51	ug/kg
10061-02-6	trans-1,3-Dichloropropene	ND	5.0	0.83	ug/kg
100-41-4	Ethylbenzene	ND	1.0	0.50	ug/kg
591-78-6	2-Hexanone	ND	5.0	1.8	ug/kg
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	2.0	ug/kg
75-09-2	Methylene chloride	ND	5.0	0.48	ug/kg
100-42-5	Styrene	ND	5.0	0.23	ug/kg
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.0	0.30	ug/kg
127-18-4	Tetrachloroethene	ND	5.0	0.34	ug/kg
108-88-3	Toluene	ND	1.0	0.43	ug/kg
71-55-6	1,1,1-Trichloroethane	ND	5.0	0.39	ug/kg
79-00-5	1,1,2-Trichloroethane	ND	5.0	0.30	ug/kg
79-01-6	Trichloroethene	ND	5.0	0.33	ug/kg
75-01-4	Vinyl chloride	ND	5.0	0.57	ug/kg

Account: EHTXF Entact Houston Chevron, Perth Amboy Project:

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VG5270-MB1	G108725.D	1	03/27/08	SJM	n/a	n/a	VG5270

The QC reported here applies to the following samples:

Method: SW846 8260B

J85904-1

CAS No.	Surrogate Recoveries		Limits			
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	87% 79% 97% 91%	68-123% 59-136% 75-123% 65-140%			
CAS No.	Tentatively Identified Com-		R.T.	Est. Conc.	Units	0
	Total TIC, Volatile			0	ug/kg	

Page 2 of 2

Blank Spike Summary Job Number: J85904

EHTXF Entact Houston Account: Chevron, Perth Amboy Project:

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
V1C2071-BS	1C49677.D	1	03/26/08	MAH	n/a	n/a	V1C2071

The QC reported here applies to the following samples:

Method: SW846 8260B

CAS No.	Compound	Spike ug/kg	BSP ug/kg	BSP %	Limits
07.04.1	6	2500	2540	102	37-155
67-64-1	Acetone	2500 2500	2400	96	80-116
71-43-2	Benzene			92	81-123
75-27-4	Bromodichloromethane	2500	2310	99	74-129
75-25-2	Bromoform	2500	2480		
74-83-9	Bromomethane	2500	2350	94	62-132
78-93-3	2-Butanone (MEK)	2500	2570	103	46-148
75-15-0	Carbon disulfide	2500	2420	97	60-136
56-23-5	Carbon tetrachloride	2500	2440	98	69-134
108-90-7	Chlorobenzene	2500	2460	98	84-116
75-00-3	Chloroethane	2500	2410	96	62-137
67-66-3	Chloroform	2500	2320	93	78-121
74-87-3	Chloromethane	2500	2350	94	51-149
124-48-1	Dibromochloromethane	2500	2620	105	82-127
75-34-3	1,1-Dlchloroethane	2500	2390	96	77-123
107-06-2	1,2-Dichloroethane	2500	2430	97	74-131
75-35-4	1,1-Dichloroethene	2500	2310	92	70-125
156-59-2	cis-1,2-Dichloroethene	2500	2290	92	77-122
156-60-5	trans-1,2-Dichloroethene	2500	2390	96	74-123
540-59-0	1,2-Dichloroethene (total)	5000	4680	94	76-122
78-87-5	1,2-Dichloropropane	2500	2400	96	81-119
10061-01-5	· -	2500	2330	93	82-120
10061-02-6	trans-1,3-Dichloropropene	2500	2280	91	80-123
100-41-4	Ethylbenzene	2500	2520	101	81-118
591-78-6	2-Hexanone	2500	2400	96	57-139
108-10-1	4-Methyl-2-pentanone(MIBK)	2500	2650	106	68-141
75-09-2	Methylene chloride	2500	2410	96	77-123
100-42-5	Styrene	2500	2560	102	82-126
79-34-5	1,1,2,2-Tetrachloroethane	2500	2680	107	75-125
127-18-4	Tetrachloroethene	2500	2590	104	67-129
108-88-3	Toluene	2500	2370	95	82-118
71-55-6	1,1,1-Trichloroethane	2500	2290	92	74-129
79-00-5	1,1,2-Trichloroethane	2500	2300	92	82-120
79-01-6	Trichloroethene	2500	2420	97	80-119
75-01-0	Vinyl chloride	2500	2620	105	62-139
1330-20-7	Xylene (total)	7500	7440	99	77-124
1990-70-1	Ayiche (total)	1000	טדדו	JJ	11 141

Blank Spike Summary Job Number: J85904

Account:

EHTXF Entact Houston

Project:

Chevron, Perth Amboy

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
V1C2071-BS	1C49677.D	1	03/26/08	MAH	n/a	n/a	V1C2071

The QC reported here applies to the following samples:

Method: SW846 8260B

J85904-2

CAS No.	Surrogate Recoveries	BSP	Limits
1868-53-7	Dibromofluoromethane	95%	68-123%
17060-07-0	1,2-Dichloroethane-D4	90%	59-136%
2037-26-5	Toluene-D8	94%	75-123%
460-00-4	4-Bromofluorobenzene	97%	65-140%

Page 2 of 2

Account: Project:

EHTXF Entact Houston Chevron, Perth Amboy

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
V1C2073-BS	1C49721.D	1	03/27/08	MAH	n/a	n/a	V1C2073

The QC reported here applies to the following samples:

Method: SW846 8260B

CAS No.	Compound	Spike ug/kg	BSP ug/kg	BSP %	Limits
1330-20-7	Xylene (total)	7500	7760	103	77-124
CAS No.	Surrogate Recoveries	BSP	Lin	nits	
1868-53-7	Dibromofluoromethane	98%	68-	123%	
17060-07-0	1,2-Dichloroethane-D4	98%	59-	136%	
2037-26-5	Toluene-D8	96%	75-	123%	
460-00-4	4-Bromofluorobenzene	96%	65-	140%	

Blank Spike Summary
Job Number: J85904
Account: EHTXF Entact Houston Project: Chevron, Perth Amboy

Sample File ID DF Analyze VG5270-BS G108726.D 1 03/27/08	"	Prep Batch n/a	Analytical Batch VG5270	
--	---	-------------------	----------------------------	--

The QC reported here applies to the following samples:

Method: SW846 8260B

CAS No.	Compound	Spike ug/kg	BSP ug/kg	BSP %	Limits
67-64-1	Acetone	50	58.1	116	37-155
71-43-2	Benzene	50	56.7	113	80-116
75-27-4	Bromodichloromethane	50	50.3	101	81-123
75-25-2	Bromoform	50	47.8	96	74-129
74-83-9	Bromomethane	50	54.0	108	62-132
78-93-3	2-Butanone (MEK)	50	53.5	107	46-148
75-15-0	Carbon disulfide	50	59.7	119	60-136
56-23-5	Carbon tetrachloride	50	57.3	115	69-134
108-90-7	Chlorobenzene	50	59.0	118* a	84-116
75-00-3	Chloroethane	50	55.3	111	62-137
67-66-3	Chloroform	50	55.0	110	78-121
74-87-3	Chloromethane	50	48.8	98	51-149
124-48-1	Dibromochloromethane	50	52.2	104	82-127
75-34-3	1,1-Dichloroethane	50	55.4	111	77-123
107-06-2	1,2-Dichloroethane	50	51.7	103	74-131
75-35-4	1,1-Dichloroethene	50	56.1	112	70-125
156-59-2	cis-1,2-Dichloroethene	50	57.3	115	77-122
156-60-5	trans-1,2-Dichloroethene	50	61.8	124* a	74-123
540-59-0	1,2-Dichloroethene (total)	100	119	119	76-122
78-87-5	1,2-Dichloropropane	50	50.4	101	81-119
10061-01-5	cis-1,3-Dichloropropene	50	54.6	109	82-120
10061-02-6	trans-1,3-Dichloropropene	50	53.4	107	80-123
100-41-4	Ethylbenzene	50	57.4	115	81-118
591-78-6	2-Hexanone	50	53.5	107	57-139
108-10-1	4-Methyl-2-pentanone(MIBK)	50	47.1	94	68-141
75-09-2	Methylene chloride	50	55.4	111	77-123
100-42-5	Styrene	50	61.6	123	82-126
79-34-5	1,1,2,2-Tetrachloroethane	50	48.9	98	75-125
127-18-4	Tetrachloroethene	50	57.0	114	67-129
108-88-3	Toluene	50	57.2	114	82-118
71-55-6	1,1,1-Trichloroethane	50	56.5	113	74-129
79-00-5	1,1,2-Trichloroethane	50	50.4	101	82-120
79-01-6	Trichloroethene	50	57.5	115	80-119
75-01-4	Vinyl chloride	50	55.3	111	62-139

Blank Spike Summary Job Number: J85904

EHTXF Entact Houston Account: Chevron, Perth Amboy Project:

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VG5270-BS	G108726.D	1	03/27/08	SJM	n/a	n/a	VG5270

The QC reported here applies to the following samples:

Method: SW846 8260B

J85904-1

CAS No.	Surrogate Recoveries	BSP	Limits
1868-53-7	Dibromofluoromethane	91%	68-123%
17060-07-0	1,2-Dichloroethane-D4	83%	59-136%
2037-26-5	Toluene-D8	96%	75-123%
460-00-4	4-Bromofluorobenzene	89%	65-140%

(a) High percent recoveries and no associated positive found in the QC batch.

Page 2 of 2

Matrix Spike/Matrix Spike Duplicate Summary Job Number: J85904

Account: **EHTXF Entact Houston** Chevron, Perth Amboy Project:

Sample	File ID	1	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
J86562-3MS	1C49684.D		03/26/08	MAH	n/a	n/a	V1C2071
J86562-3MSD	1C49685.D		03/26/08	MAH	n/a	n/a	V1C2071
J86562-3	1C49686.D		03/26/08	MAH	n/a	n/a	V1C2071

The QC reported here applies to the following samples:

Method: SW846 8260B

CAS No.	Compound	J86562-3 ug/kg Q	Spike ug/kg	MS ug/kg	MS %	MSD ug/kg	MSD %	RPD	Limits Rec/RPD
67-64-1	Acetone	ND	2510	2650	106	2530	101	5	28-172/38
71-43-2	Benzene	ND	2510	2150	86	2160	86	0	50-134/21
75-27-4	Bromodichloromethane	ND	2510	2130	85	2160	86	1	47-150/21
75-25-2	Bromoform	ND	2510	2190	87	2260	90	3	41-152/23
74-83-9	Bromomethane	ND	2510	2250	90	2320	92	3	12-138/36
78-93-3	2-Butanone (MEK)	ND	2510	2330	93	2410	96	3	37-165/35
75-15-0	Carbon disulfide	ND	2510	2050	82	2030	81	1	37-139/24
56-23-5	Carbon tetrachloride	ND	2510	2040	81	2000	80	2	30-168/24
108-90-7	Chlorobenzene	ND	2510	2250	90	2290	91	2	44-140/24
75-00-3	Chloroethane	ND	2510	2040	81	2150	86	5	8-143/33
67-66-3	Chloroform	ND	2510	2040	81	2070	82	1	55-137/21
74-87-3	Chloromethane	ND	2510	2450	98	2510	100	2	37-139/30
124-48-1	Dibromochloromethane	ND	2510	2370	94	2450	98	3	47-146/22
75-34-3	1,1-Dlchloroethane	ND	2510	2180	87	2210	88	1	57-133/21
107-06-2	1,2-Dichloroethane	ND	2510	2090	83	2140	85	2	50-145/21
75-35-4	1,1-Dichloroethene	ND	2510	2100	84	2130	85	1	45-139/23
156-59-2	cis-1,2-Dichloroethene	ND	2510	2190	87	2200	88	0	53-136/20
156-60-5	trans-1,2-Dichloroethene	ND	2510	2090	83	2090	83	0	49-136/22
540-59-0	1,2-Dlchloroethene (total)	ND	5020	4280	85	4290	85	0	51-136/21
78-87-5	1,2-Dichloropropane	ND	2510	2230	89	2290	91	3	56-133/20
10061-01-5	cis-1,3-Dlchloropropene	ND	2510	2180	87	2230	89	2	50-137/20
10061-02-6	trans-1,3-Dichloropropene	ND	2510	2110	84	2160	86	2	46-143/22
100-41-4	Ethylbenzene	ND	2510	2230	89	2230	89	0	38-145/27
591-78-6	2-Hexanone	ND	2510	2170	86	2210	88	2	35-155/31
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	2510	2280	91	2380	95	4	48-147/26
75-09-2	Methylene chloride	ND	2510	2160	86	2220	88	3	53-134/20
100-42-5	Styrene	ND	2510	2230	89	2270	90	2	39-147/25
79-34-5	1,1,2,2-Tetrachloroethane	ND	2510	2390	95	2410	96	1	47-134/26
127-18-4	Tetrachloroethene	ND	2510	2280	91	2340	93	3	38-155/27
108-88-3	Toluene	ND	2510	2230	89	2210	88	1	46-141/23
71-55-6	1,1,1-Trichloroethane	ND	2510	1950	78	1970	78	1	46-147/23
79-00-5	1,1,2-Trichloroethane	ND	2510	2210	88	2270	90	3	54-140/22
79-01-6	Trichloroethene	ND	2510	2140	85	2150	86	0	46-144/22
75-01-4	Vinyl chloride	ND	2510	2460	98	2490	99	1	43-135/28
1330-20-7	Xylene (total)	ND	7530	6800	90	6820	91	0	38-145/27

Matrix Spike/Matrix Spike Duplicate Summary Job Number: J85904

Page 2 of 2

EHTXF Entact Houston Account: Chevron, Perth Amboy Project:

Sample File ID J86562-3MS 1C49684 J86562-3MSD 1C49685 J86562-3 1C49686	.D 1	Analyzed 03/26/08 03/26/08 03/26/08	By MAH MAH MAH	Prep Date n/a n/a n/a	Prep Batch n/a n/a n/a	Analytical Batch V1C2071 V1C2071 V1C2071
--	------	--	-------------------------	--------------------------------	---------------------------------	---

The QC reported here applies to the following samples:

Method: SW846 8260B

CAS No.	Surrogate Recoveries	MS	MSD	J86562-3	Limits
1868-53-7	Dibromofluoromethane	90%	91%	91%	68-123%
17060-07-0	1,2-Dichloroethane-D4	84%	85%	84%	59-136%
2037-26-5	Toluene-D8	95%	95%	93%	75-123%
460-00-4	4-Bromofluorobenzene	96%	96%	100%	65-140%

Page 1 of 1

EHTXF Entact Houston Account: Chevron, Perth Amboy Project:

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
J86628-1MS	1C49726.D	1	03/27/08	MAH	n/a	n/a	V1C2073
J86628-1MSD	1C49727.D	1	03/27/08	MAH	n/a	n/a	V1C2073
J86628-1	1C49728.D	1	03/27/08	MAH	n/a	n/a	V1C2073

The QC reported here applies to the following samples:

Method: SW846 8260B

CAS No. Compound	J86628-1 ug/kg Q	Spike ug/kg	MS ug/kg	MS %	MSD ug/kg	MSD %	RPD	Limits Rec/RPD
1330-20-7 Xylene (total)	ND	8120	6330	78	6500	80	3	38-145/27
CAS No. Surrogate Recoveries	MS	MSD	J86	628-1	Limits			
1868-53-7 Dibromofluoromethane 17060-07-0 1,2-Dichloroethane-D4 2037-26-5 Toluene-D8	93% 86% 94%	92% 84% 94%	94% 87% 94%	6 6	68-123° 59-136° 75-123°	% %		
460-00-4 4-Bromofluorobenzene	94%	94%	97%	o .	65-140	70		

Matrix Spike/Matrix Spike Duplicate Summary Job Number: J85904

Page 1 of 2

EHTXF Entact Houston Account: Chevron, Perth Amboy Project:

Sample J86058-1MS J86058-1MSD J86058-1	File ID G108734.D G108735.D G108732.D	1	Analyzed 03/27/08 03/27/08 03/27/08	By SJM SJM SJM	Prep Date n/a n/a n/a	Prep Batch n/a n/a n/a	Analytical Batch VG5270 VG5270 VG5270	
---	--	---	--	-------------------------	--------------------------------	---------------------------------	--	--

The QC reported here applies to the following samples:

Method: SW846 8260B

CAS No.	Compound	J86058- ug/kg	Q Q	Spike ug/kg	MS ug/kg	MS %	MSD ug/kg	MSD %	RPD	Limits Rec/RPD
67-64-1	Acetone	ND		76.8	68.7	89	107	139	44* a	28-172/38
71-43-2	Benzene	ND		76.8	56.0	73	57.9	75	3	50-134/21
75-27-4	Bromodichloromethane	ND		76.8	48.5	63	50.6	66	4	47-150/21
75-25-2	Bromoform	ND		76.8	47.3	62	51.9	68	9	41-152/23
74-83-9	Bromomethane	ND		76.8	47.0	61	47.6	62	1	12-138/36
78-93-3	2-Butanone (MEK)	ND		76.8	37.5	49	43.3	56	14	37-165/35
75-15-0	Carbon disulfide	ND		76.8	51.7	67	53.7	70	4	37-139/24
56-23-5	Carbon tetrachloride	ND		76.8	49.9	65	52.0	68	4	30-168/24
108-90-7	Chlorobenzene	ND		76.8	55.6	72	58.0	76	4	44-140/24
75-00-3	Chloroethane	ND		76.8	46.4	60	47.8	62	3	8-143/33
67-66-3	Chloroform	ND		76.8	51.7	67	53.4	70	3	55-137/21
74-87-3	Chloromethane	ND		76.8	38.5	50	37.2	48	3	37-139/30
124-48-1	Dibromochloromethane	ND		76.8	50.9	66	54.4	71	7	47-146/22
75-34-3	1,1-Dichloroethane	ND		76.8	50.7	66	53.3	69	5	57-133/21
107-06-2	1,2-Dichloroethane	ND		76.8	52.1	68	53.4	70	2	50-145/21
75-35-4	1,1-Dichloroethene	ND		76.8	49.4	64	51.2	67	4	45-139/23
156-59-2	cis-1,2-Dichloroethene	ND		76.8	53.0	69	55.5	72	5	53-136/20
156-60-5	trans-1,2-Dichloroethene	ND		76.8	54.4	71	57.7	75	6	49-136/22
540-59-0	1,2-Dichloroethene (total)	ND		154	107	70	113	74	5	51-136/21
78-87-5	1,2-Dichloropropane	ND		76.8	49.3	64	51.9	68	5	56-133/20
	cis-1,3-Dichloropropene	ND		76.8	52.9	69	55.6	72	5	50-137/20
	trans-1,3-Dichloropropene	ND		76.8	52.0	68	55.8	73	7	46-143/22
100-41-4	Ethylbenzene	ND		76.8	51.7	67	54.6	71	5	38-145/27
591-78-6	2-Hexanone	ND		76.8	38.0	49	44.9	58	17	35-155/31
108-10-1	4-Methyl-2-pentanone(MIBK)	ND		76.8	48.9	64	57.9	75	17	48-147/26
75-09-2	Methylene chloride	ND		76.8	52.8	69	55.0	72	4	53-134/20
100-42-5	Styrene	ND		76.8	57.4	75	60.1	78	5	39-147/25
79-34-5	1,1,2,2-Tetrachloroethane	ND		76.8	51.8	67	54.7	71	5	47-134/26
127-18-4	Tetrachloroethene	ND		76.8	63.2	82	68.5	89	8	38-155/27
108-88-3	Toluene	ND		76.8	54.1	70	56.5	74	4	46-141/23
71-55-6	1,1,1-Trichloroethane	ND		76.8	48.7	63	51.3	67	5	46-147/23
79-00-5	1,1,2-Trichloroethane	ND		76.8	52.8	69	57.2	74	8	54-140/22
79-01-6	Trichloroethene	ND		76.8	53.7	70	55.5	72	3	46-144/22
75-01-4	Vinyl chloride	ND		76.8	46.7	61	47.7	62	2	43-135/28

Matrix Spike/Matrix Spike Duplicate Summary Job Number: J85904

Page 2 of 2

Account: Project:

EHTXF Entact Houston Chevron, Perth Amboy

The QC reported here applies to the following samples:

Method: SW846 8260B

J85904-1

CAS No.	Surrogate Recoveries	MS	MSD	J86058-1	Limits
	Dibromofluoromethane 1.2-Dichloroethane-D4	86% 77%	86% 78%	84% 77%	68-123% 59-136%
2037-26-5	Toluene-D8	97%	97%	99%	75-123%
460-00-4	4-Bromofluorobenzene	87%	88%	88%	65-140%

(a) Outside control limits due to matrix interference.

Job Number: J85904

Account: EHTXF Entact Houston Project: Chevron, Perth Amboy

Sample: V1C2051-BFB Injection Date: 03/13/08
Lab File ID: 1C49258.D Injection Time: 12:34
Instrument ID: GCMS1C

m/e	Ion Abundance Criteria	Raw Abundance	% Relativ Abundan		Pass/Fail
50	15.0 - 40.0% of mass 95	18125	22.6		Pass
75	30.0 - 60.0% of mass 95	45024	56.2		Pass
95	Base peak, 100% relative abundance	80080	100.0		Pass
96	5.0 - 9.0% of mass 95	5450	6.8		Pass
173	Less than 2.0% of mass 174	0	0.0	$(0.0)^{a}$	Pass
174	50.0 - 120.0% of mass 95	82029	102.4		Pass
175	5.0 - 9.0% of mass 174	5896	7.4	$(7.2)^{a}$	Pass
176	95.0 - 101.0% of mass 174	80085	100.0	$(97.6)^{a}$	Pass
177	5.0 - 9.0% of mass 176	5369	6.7	(6.7) b	Pass

⁽a) Value is % of mass 174

This check applies to the following Samples, MS, MSD, Blanks, and Standards:

Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed	Hours Lapsed	Client Sample ID
V1C2051-lC2051	1C49259.D	03/13/08	13:06	00:32	Initial cal 1
V1C2051-IC2051	1C49260.D	03/13/08	13:36	01:02	Initial cal 2
V1C2051-IC2051	1C49261.D	03/13/08	14:06	01:32	Initial cal 5
V1C2051-IC2051	1C49262.D	03/13/08	14:36	02:02	Initial cal 10
V1C2051-lC2051	1C49263.D	03/13/08	15:06	02:32	Initial cal 20
V1C2051-ICC2051	1C49264.D	03/13/08	15:36	03:02	Initial cal 50
V1C2051-IC2051	1C49265.D	03/13/08	16:06	03:32	Initial cal 100
V1C2051-IC2051	1C49266.D	03/13/08	16:36	04:02	Initial cal 200

⁽b) Value is % of mass 176

Job Number: J85904

Account: EHTXF Entact Houston Project: Chevron, Perth Amboy

Sample: V1C2071-BFB Injection Date: 03/26/08
Lab File ID: 1C49673.D Injection Time: 09:21
Instrument ID: GCMS1C

Raw % Relative Abundance Abundance Pass/Fail Ion Abundance Criteria m/e 14076 22.5 Pass 15.0 - 40.0% of mass 95 50 35840 57.4 Pass 30.0 - 60.0% of mass 95 75 62485 100.0 Pass 95 Base peak, 100% relative abundance Pass 6.8 4279 5.0 - 9.0% of mass 95 96 0.0 (0.0) a Pass 0 Less than 2.0% of mass 174 173 63306 101.3 Pass 174 50.0 - 120.0% of mass 95 Pass 7.4 $(7.3)^{-a}$ 4605 5.0 - 9.0% of mass 174 175 $(97.0)^{a}$ Pass 61376 98.2 95.0 - 101.0% of mass 174 176 7.1 (7.3) b Pass 4450 5.0 - 9.0% of mass 176 177

This check applies to the following Samples, MS, MSD, Blanks, and Standards:

Lab	Lab	Date	Time	Hours	Client
Sample ID	File ID	Analyzed	Analyzed	Lapsed	Sample ID
•					
V1C2071-CC2051	1C49674.D	03/26/08	09:59	00:38	Continuing cal 20
V1C2071-MB	1C49676.D	03/26/08	11:09	01:48	Method Blank
V1C2071-BS	1C49677.D	03/26/08	11:50	02:29	Blank Spike
ZZZZZZ	1C49678.D	03/26/08	12:27	03:06	(unrelated sample)
ZZZZZZ	1C49679.D	03/26/08	12:58	03:37	(unrelated sample)
ZZZZZZ	1C49680.D	03/26/08	13:28	04:07	(unrelated sample)
ZZZZZZ	1C49682.D	03/26/08	14:28	05:07	(unrelated sample)
ZZZZZZ	1C49683.D	03/26/08	14:58	05:37	(unrelated sample)
J86562-3MS	1C49684.D	03/26/08	15:28	06:07	Matrix Spike
J86562-3MSD	1C49685.D	03/26/08	15:58	06:37	Matrix Spike Duplicate
J86562-3	1C49686.D	03/26/08	16:32	07:11	(used for QC only; not part of job J85904)
ZZZZZZ	1C49687.D	03/26/08	17:02	07:41	(unrelated sample)
ZZZZZZ	1C49688.D	03/26/08	17:32	08:11	(unrelated sample)
ZZZZZZ	1C49689.D	03/26/08	18:02	08:41	(unrelated sample)
J85904-2	1C49690.D	03/26/08	18:32	09:11	S2387RF4
ZZZZZZ	1C49693.D	03/26/08	20:03	10:42	(unrelated sample)
ZZZZZZ	1C49694.D	03/26/08	20:33	11:12	(unrelated sample)
ZZZZZZ	1C49695.D	03/26/08	21:03	11:42	(unrelated sample)

⁽a) Value is % of mass 174

⁽b) Value is % of mass 176

Instrument Performance Check (BFB)

Job Number: J85904

Account: EHTXF Entact Houston Project: Chevron, Perth Amboy

Sample: V1C2073-BFB Injection Date: 03/27/08 Lab File ID: 1C49717.D Injection Time: 08:35

Instrument ID: GCMS1C

m/e	Ion Abundance Criteria	Raw Abundance	% Relati Abundan		Pass/Fail
50	15.0 - 40.0% of mass 95	24730	24.7		Pass
75	30.0 - 60.0% of mass 95	59792	59.8		Pass
95	Base peak, 100% relative abundance	99994	100.0		Pass
96	5.0 - 9.0% of mass 95	6966	7.0		Pass
173	Less than 2.0% of mass 174	0	0.0	$(0.0)^{a}$	Pass
174	50.0 - 120.0% of mass 95	98586	98.6		Pass
175	5.0 - 9.0% of mass 174	7312	7.3	$(7.4)^{a}$	Pass
176	95.0 - 101.0% of mass 174	95320	95.3	(96.7) a	Pass
177	5.0 - 9.0% of mass 176	6433	6.4	(6.7) b	Pass

⁽a) Value is % of mass 174

This check applies to the following Samples, MS, MSD, Blanks, and Standards:

V1C2073-CC2051 1C49718.D 03/27/08 09:14 00:39 Continuing cal 20 V1C2073-MB 1C49720.D 03/27/08 10:32 01:57 Method Blank V1C2073-BS 1C49721.D 03/27/08 11:13 02:38 Blank Spike ZZZZZZ 1C49722.D 03/27/08 12:02 03:27 (unrelated sample) ZZZZZZ 1C49723.D 03/27/08 12:31 03:56 (unrelated sample) ZZZZZZ 1C49724.D 03/27/08 13:02 04:27 (unrelated sample) ZZZZZZ 1C49725.D 03/27/08 13:32 04:57 (unrelated sample) J86628-1MS 1C49726.D 03/27/08 14:02 05:27 Matrix Spike J86628-1MSD 1C49727.D 03/27/08 14:32 05:57 Matrix Spike Duplicate	Lab	Lab	Date	Time	Hours	Client
	Sample ID	File ID	Analyzed	Analyzed	Lapsed	Sample ID
ZZZZZZ 1C49732.D 03/27/08 17:04 08:29 (unrelated sample) J85904-1 1C49733.D 03/27/08 17:34 08:59 S2197RB2 ZZZZZZ 1C49735.D 03/27/08 18:34 09:59 (unrelated sample) ZZZZZZ 1C49736.D 03/27/08 19:04 10:29 (unrelated sample) ZZZZZZ 1C49737.D 03/27/08 19:34 10:59 (unrelated sample)	V1C2073-CC2051 V1C2073-MB V1C2073-BS ZZZZZZ ZZZZZZ ZZZZZZ ZZZZZZ ZZZZZZ ZZZZ	File ID 1C49718.D 1C49720.D 1C49721.D 1C49722.D 1C49723.D 1C49725.D 1C49725.D 1C49726.D 1C49727.D 1C49728.D 1C49730.D 1C49731.D 1C49732.D 1C49733.D 1C49735.D 1C49735.D 1C49736.D	Analyzed 03/27/08	Analyzed 09:14 10:32 11:13 12:02 12:31 13:02 13:32 14:02 14:32 15:02 15:32 16:02 16:31 17:04 17:34 18:34 19:04	00:39 01:57 02:38 03:27 03:56 04:27 04:57 05:27 05:57 06:27 06:57 07:27 07:56 08:29 08:59 09:59 10:29	Continuing cal 20 Method Blank Blank Spike (unrelated sample) (unrelated sample) (unrelated sample) (unrelated sample) (unrelated sample) Matrix Spike Matrix Spike Duplicate (used for QC only; not part of job J85904) (unrelated sample)

Page 1 of 1

⁽b) Value is % of mass 176

Instrument Performance Check (BFB)

Job Number: J85904

Account: EHTXF Entact Houston Project: Chevron, Perth Amboy

Sample: VG5266-BFB
Lab File ID: G108660.D
Instrument ID: GCMSG

Injection Date: 03/25/08 Injection Time: 12:06

> <u>4</u> ئ

Page 1 of 1

m/e	Ion Abundance Criteria	Raw Abundance	% Relati Abundar		Pass/Fail
50	15.0 - 40.0% of mass 95	7037	24.8		Pass
75	30.0 - 60.0% of mass 95	15395	54.3		Pass
95	Base peak, 100% relative abundance	28346	100.0		Pass
96	5.0 - 9.0% of mass 95	2193	7.7		Pass
173	Less than 2.0% of mass 174	0	0.0	$(0.0)^{a}$	Pass
174	50.0 - 120.0% of mass 95	21890	77.2		Pass
175	5.0 - 9.0% of mass 174	1763	6.2	$(8.1)^{a}$	Pass
176	95.0 - 101.0% of mass 174	21752	76.7	$(99.4)^{a}$	Pass
177	5.0 - 9.0% of mass 176	1606	5.7	(7.4) b	Pass

⁽a) Value is % of mass 174

This check applies to the following Samples, MS, MSD, Blanks, and Standards:

Lab Sample ID	Lab File ID	Date Analyz e d	Time Analyz e d	Hours Lapsed	Client Sample ID
VG5266-1C5266	G108661.D	03/25/08	12:41	00:35	Initial cal 1
VG5266-IC5266	G108662.D	03/25/08	13:16	01:10	Initial cal 5
VG5266-IC5266	G108663.D	03/25/08	13:51	01:45	Initial cal 10
VG5266-IC5266	G108664.D	03/25/08	14:26	02:20	Initial cal 20
VG5266-ICC5266	G108665.D	03/25/08	15:01	02:55	Initial cal 50
VG5266-IC5266	G108666.D	03/25/08	15:41	03:35	Initial cal 100
VG5266-IC5266	G108667.D	03/25/08	16:16	04:10	Initial cal 200

⁽b) Value is % of mass 176

Instrument Performance Check (BFB)

Job Number: J85904

Account: EHTXF Entact Houston Project: Chevron, Perth Amboy

Sample: VG5270-BFB1 Injection Date: 03/27/08 Lab File ID: G108722.D Injection Time: 08:58

Instrument ID: GCMSG

m/e	Ion Abundance Criteria	Raw Abundance	% Relati Abundar		Pass/Fail
50	15.0 - 40.0% of mass 95	6129	23.3		Pass
75	30.0 - 60.0% of mass 95	13767	52.3		Pass
95	Base peak, 100% relative abundance	26320	100.0		Pass
96	5.0 - 9.0% of mass 95	1984	7.5		Pass
173	Less than 2.0% of mass 174	0	0.0	$(0.0)^{a}$	Pass
174	50.0 - 120.0% of mass 95	19560	74.3		Pass
175	5.0 - 9.0% of mass 174	1547	5.9	(7.9) a	Pass
176	95.0 - 101.0% of mass 174	19306	73.4	$(98.7)^{-8}$	Pass
177	5.0 - 9.0% of mass 176	1318	5.0	(6.8) b	Pass

⁽a) Value is % of mass 174

This check applies to the following Samples, MS, MSD, Blanks, and Standards:

Lab	Lab	Date	Time	Hours	Client
Sample ID	File ID	Analyzed	Analyzed	Lapsed	Sample ID
VG5270-CC5266	G108723.D	03/27/08	09:46	00:48	Continuing cal 50
VG5270-MB1	G108725.D	03/27/08	11:10	02:12	Method Blank
VG5270-BS	G108726.D	03/27/08	11:52	02:54	Blank Spike
ZZZZZZ	G108729.D	03/27/08	13:41	04:43	(unrelated sample)
J85904-1	G108730.D	03/27/08	14:20	05:22	S2197RB2
J86058-1	G108732.D	03/27/08	15:30	06:32	(used for QC only; not part of job J85904)
ZZZZZZ	G108733.D	03/27/08	16:05	07:07	(unrelated sample)
J86058-1MS	G108734.D	03/27/08	16:40	07:42	Matrix Spike
J86058-1MSD	G108735.D	03/27/08	17:18	08:20	Matrix Spike Duplicate
ZZZZZZ	G108736.D	03/27/08	17:53	08:55	(unrelated sample)
ZZZZZZ	G108737.D	03/27/08	18:28	09:30	(unrelated sampie)
ZZZZZZ	G108738.D	03/27/08	19:03	10:05	(unrelated sample)
ZZZZZZ	G108739.D	03/27/08	19:38	10:40	(unrelated sample)
ZZZZZZ	G108740.D	03/27/08	20:14	11:16	(unrelated sample)
ZZZZZZ	G108741.D	03/27/08	20:49	11:51	(unrelated sample)

Page 1 of 1

⁽b) Value is % of mass 176

Job Number:

J85904

Account: Project:

EHTXF Entact Houston Chevron, Perth Amboy

Check Std: Lab File ID:

Instrument ID: GCMS1C

V1C2071-CC2051

1C49674.D

03/26/08 Injection Date: Injection Time: 09:59

Method:

SW846 8260B

	IS 1	ът	IS 2	рт	IS 3 AREA	RT	IS 4 AREA	RT	IS 5 AREA	RT
	AREA	RT	AREA	RT	AKEA	K1	AREA	K1	AREA	K1
Check Std	116047	9.20	232258	11.59	296764	12.55	277588	15.88	180927	18.37
Upper Limit ^a	232094	9.70	464516	12.09	593528	13.05	555176	16.38	361854	18.87
Lower Limit b	58024	8.70	116129	11.09	148382	12.05	138794	15.38	90464	17.87
Lab	IS 1		IS 2	.,	IS 3		IS 4		IS 5	
Sample ID	AREA	RT	AREA	RT	AREA	RT	AREA	RT	AREA	RT
V1C2071-MB	89188	9.21	207074	11.59	272674	12.55	258643	15.88	163334	18.38
V1C2071-BS	108509	9.20	213113	11.59	278210	12.56	258899	15.88	171340	18.37
ZZZZZZ	80807	9.20	206359	11.59	271624	12.55	260323	15.88	170731	18.37
ZZZZZZ	88445	9.20	221851	11.59	291093	12.55	273651	15.88	1751 96	18.37
ZZZZZZ	87714	9.21	231412	11.59	312125	12.55	302154	15.88	196041	18.37
ZZZZZZ	87363	9.21	231694	11.59	301598	12.55	285084	15.88	182334	18.37
ZZZZZZ	98563	9.21	246630	11.59	320375	12.56	327641	15.88	193025	18.38
J86562-3MS	82076	9.21	238946	11.59	310816	12.55	294499	15.88	192290	18.37
J86562-3MSD	81692	9.20	232211	11.59	303859	12.55	286233	15.88	188601	18.37
J86562-3	80537	9.21	229287	11.59	303375	12.55	288181	15.88	179111	18.37
ZZZZZZ	97496	9.19	222380	11.59	294310	12.55	276572	15.88	178107	18.37
ZZZZZZ	94118	9.21	218896	11.59	286603	12.55	272034	15.88	170938	18.37
ZZZZZZ	72312	9.20	207258	11.59	280284	12.55	267793	15.88	187544	18.37
J85904-2 ^c	99452	9.19	227594	11.59	300508	12.55	287340	15.88	194220	18.37
ZZZZZZ	88617	9.20	219344	11.59	289041	12.56	270649	15.88	175887	18.37
ZZZZZZ	83512	9.20	214842	11.59	285143	12.55	270238	15.88	176049	18.37
ZZZZZZ	84957	9.20	215355	11.59	283691	12.55	266877	15.88	169253	18.37

= Tert Butyl Alcohol-D9 IS 1 IS 2 = Pentafluorobenzene IS 3 = 1,4-Difluorobenzene IS 4 = Chlorobenzene-D5 IS 5 = 1,4-Dichlorobenzene-d4

- (a) Upper Limit = +100% of check standard area; Retention time +0.5 minutes.
- (b) Lower Limit = -50% of check standard area; Retention time -0.5 minutes.
- (c) Dilution required due to matrix interference.

Job Number:

J85904

Account: Project:

EHTXF Entact Houston Chevron, Perth Amboy

Check Std: Lab File ID:

Instrument ID: GCMS1C

V1C2073-CC2051

1C49718.D

Injection Date: Injection Time: 09:14

03/27/08

Method:

SW846 8260B

	IS 1 AREA	RT	IS 2 AREA	RT	IS 3 AREA	RT	IS 4 AREA	RT	IS 5 AREA	RT
Check Std	80890	9.19	188611	11.59	241273	12.55	228770	15.88	153101	18.37
Upper Limit ^a	161780	9.69	377222	12.09	482546	13.05	457540	16.38	306202	18.87
Lower Limit ^b	40445	8.69	94306	11.09	120637	12.05	114385	15.38	76551	17.87
Lab	IS 1		IS 2		IS 3		IS 4		IS 5	
Sample ID	AREA	RT	AREA	RT	AREA	RT	AREA	RT	AREA	RT
V1C2073-MB	79726	9.21	181744	11.59	233444	12.55	224800	15.88	145105	18.37
V1C2073-BS	83420	9.19	180970	11.59	233838	12.56	223934	15.88	152069	18.37
ZZZZZZ	77672	9.20	192004	11.59	251938	12.55	237483	15.88	147424	18.37
ZZZZZZ	85176	9.21	184518	11.59	243439	12.55	240207	15.88	163920	18.37
ZZZZZZ	104318	9.20	209148	11.59	273609	12.56	260219	15.88	169215	18.37
ZZZZZZ	144282	9.21	216128	11.59	299457	12.55	291483	15.88	197374	18.37
J86628-1MS	126676	9.21	229228	11.59	295701	12.55	278870	15.88	189305	18.37
J86628-1MSD	103019	9.22	231217	11.59	301549	12.55	283718	15.88	191321	18.37
J86628-1	101246	9.21	222917	11.59	297286	12.55	279234	15.88	181633	18.37
ZZZZZZ	102369	9.21	223332	11.59	292752	12.55	275540	15.88	177854	18.37
ZZZZZZ	101852	9.21	220823	11.59	289653	12.55	272409	15.88	175828	18.37
ZZZZZZ	99642	9.19	213514	11.59	281775	12.55	268093	15.88	169918	18.38
ZZZZZZ	93074	9.20	207504	11.59	277692	12.56	261124	15.88	177610	18.37
J85904-1	108251	9.21	223432	11.59	298247	12.55	286854	15.88	190145	18.37
ZZZZZZ	100208	9.22	228295	11.59	301938	12.55	286443	15.88		18.37
ZZZZZZ	98373	9.21	228284	11.59	300173	12.55	285854	15.88	179872	18.37
ZZZZZZ	96797	9.21	220665	11.59	291498	12.55	272621	15.88	184111	18.37
ZZZZZZ	108349	9.19	215987	11.59	284752	12.55	272584	15.88	186390	18.37

IS 1 = Tert Butyl Alcohol-D9

= Pentafluorobenzene IS 2 = 1,4-Difluorobenzene IS 3

= Chlorobenzene-D5 IS 4

= 1,4-Dichlorobenzene-d4 IS 5

(a) Upper Limit = +100% of check standard area; Retention time +0.5 minutes.

(b) Lower Limit = -50% of check standard area; Retention time -0.5 minutes.

Job Number:

J85904

EHTXF Entact Houston Account: Project: Chevron, Perth Amboy

Check Std: Lab File 1D: VG5270-CC5266

G108723.D Instrument 1D: GCMSG

Injection Date: Injection Time:

Method:

03/27/08 09:46

SW846 8260B

	1S 1		1S 2		1S 3		1S 4		1S 5	
	AREA	RT	AREA	RT	AREA	RT	AREA	RT	AREA	RT
Check Std	95509	5.82	382274	9.57	449660	11.58	336748	17.78	202543	22.21
Upper Limit ^a	191018	6.32	764548	10.07	899320	12.08	673496	18.28	405086	22.71
Lower Limit b	47755	5.32	191137	9.07	224830	11.08	168374	17.28	101272	21.71
Lab	1S 1		1S 2		1S 3		1S 4		1S 5	
Sample 1D	AREA	RT	AREA	RT	AREA	RT	AREA	RT	AREA	RT
VG5270-MB1	101512	5.83	413021	9.60	468388	11.60	368359	17.79	202664	22,23
VG5270-BS	88447	5.84	355843	9.59	429144	11.59	310804	17.78	189347	22.22
ZZZZZZ	113374	5.87	389144	9.60	476126	11.59	228177	17.81	76572*	22.25
J85904-1	128265	5.85	400374	9.58	517133	11.59	357965	17.79	169961	22.24
J86058-1	128202	5.83	478137	9.58	514618	11.60	414791	17.80	235231	22.23
ZZZZZZ	108533	5.84	497203	9.59	535910	11.60	425160	17.79	223087	22.23
J86058-1MS	119029	5.85	48352 9	9.59	553481	11.60	417585	17.80	248024	22.23
J86058-1MSD	130590	5.85	473402	9.59	545413	11.59	409133	17.79	247441	22.23
ZZZZZZ	152844	5.85	515715	9.60	575627	11.60	468357	17.79	262461	22.23
ZZZZZZ	145819	5.84	482591	9.59	536342	11.60	418049	17.80	213787	22.24
ZZZZZZ	132944	5.86	465046	9.59	521360	11.61	412854	17.79	215008	22.24
ZZZZZZ	117985	5.85	429738	9.60	494765	11.60	360873	17.80	147384	22.24
ZZZZZZ	140341	5.84	445074	9.60	513567	11.60	371638	17.79	189560	22.23
ZZZZZZ	139398	5.84	449148	9.59	499912	11.61	392005	17.79	215852	22.24

= Tert Butyl Alcohol-D9 1S 1 = Pentafluorobenzene 1S 2 = 1,4-Difluorobenzene 1S 3 1S 4 = Chlorobenzene-D5 1S 5 = 1,4-Dichlorobenzene-d4

(a) Upper Limit = +100% of check standard area; Retention time +0.5 minutes.

(b) Lower Limit = -50% of check standard area; Retention time -0.5 minutes.

Volatile Surrogate Recovery Summary Job Number: J85904

EHTXF Entact Houston Account: Project: Chevron, Perth Amboy

SO Method: SW846 8260B Matrix:

Samples and QC shown here apply to the above method

Lab	Lab				
Sample ID	File 1D	S1	S2	S3	S4
J85904-1	1C49733.D	93.0	91.0	94.0	95.0
J85904-1	G108730.D	84.0	85.0	89.0	134.0
J85904-2	1C49690.D	92.0	89.0	96.0	92.0
J86058-1MS	G108734.D	86.0	77.0	97.0	87.0
J86058-1MSD	G108735.D	86.0	78.0	97.0	88.0
J86562-3MS	1C49684.D	90.0	84.0	95.0	96.0
J86562-3MSD	1C49685.D	91.0	85.0	95.0	96.0
J86628-1MS	1C49726.D	93.0	86.0	94.0	94.0
J86628-1MSD	1C49727.D	92.0	84.0	94.0	94.0
V1C2071-BS	1C49677.D	95.0	90.0	94.0	97.0
V1C2071-MB	1C49676.D	92.0	90.0	93.0	99.0
V1C2073-BS	1C49721.D	98.0	98.0	96.0	96.0
V1C2073-MB	1C49720.D	93.0	97.0	94.0	100.0
VG5270-BS	G108726.D	91.0	83.0	96.0	89.0
VG5270-MB1	G108725.D	87.0	79.0	97.0	91.0

Surrogate Recovery Limits Compounds

68-123% S1 = Dihromofluoromethane59-136%S2 = 1.2-Dichloroethane-D4 S3 = Toluene-D875-123% S4 = 4-Bromofluorobenzene 65-140%

Page 1 of 1

Page 1 of 3

9.34

Initial Calibration Summary

Sample: V1C2051-ICC2051 Job Number: 185904 Lab FileID: 1C49264.D EHTXF Entact Houston

Account: Chevron, Perth Amboy Project:

Response Factor Report MS1C

Method : C:\MSDCHEM\1\METHODS\M1C2051.M (RTE Integrator)
Title : SW-846 Method 8260B

Last Update : Thu Mar 13 17:13:49 2008 Response via : Initial Calibration

Calibration Files

1 =1C49259.D 2 =1C49260.D 100 =1C49265.D 50 =1C49264.D 20 =1C49263.D 200 =1C49266.D 5 =1C49261.D 10 =1C49262.D

Compound 1 2 100 50 20 200 5 10 Avg &RSD _____

1) I Tert Butyl Alcohol-d9 -----ISTD-----ISTD-----

2) tertiary but 0.865 1.200 1.201 1.176 1.149 0.967 1.055 1.088 11.99 0.072 0.070 0.071 0.065 0.071 0.069 0.070 3.69 3) 1,4-dioxane ----ISTD-----4) I pentafluorobenzene 5) chlorodifluo 0.511 0.615 0.627 0.662 0.663 0.559 0.672 0.665 0.622 9.40 6) dichlorodifl 0.706 0.715 0.713 0.597 0.552 0.785 0.678 12.70

7) chloromethan 0.717 0.609 0.561 0.556 0.568 0.465 0.559 0.620 0.582 12.34 8) vinyl chlori 0.583 0.609 0.532 0.535 0.535 0.450 0.520 0.564 0.541 8.78 9) bromomethane 0.425 0.366 0.382 0.369 0.369 0.318 0.369 0.390 0.373 10) chloroethane 0.275 0.303 0.282 0.277 0.277 0.236 0.262 0.286 0.275 11) trichloroflu 0.928 1.007 1.025 1.016 1.030 0.851 0.978 1.104 0.992

12) ethyl ether 0.197 0.170 0.244 0.237 0.217 0.227 0.208 0.234 0.217 11.34 13) acrolein 0.013 0.012 0.011 0.012 0.006 0.008 0.010 29.47

---- Linear regression ---- Coefficient = 0.9979

Response Ratio = -0.00464 + 0.01257 *A14) 1,1-dichloro 0.426 0.321 0.442 0.437 0.413 0.401 0.419 0.425 0.411

15) acetone 0.161 0.158 0.134 0.147 0.148 0.150 7.12 16) allyl chlori 1.055 1.055 1.270 1.230 1.333 1.142 1.137 1.209 1.179 8.46 17) acetonitrile 0.040 0.032 0.039 0.038 0.039 0.034 0.035 0.036 0.037 20) carbon disul 1.510 1.251 1.450 1.428 1.354 1.334 1.339 1.418 1.385

21) methylene ch 0.515 0.407 0.484 0.477 0.457 0.435 0.442 0.475 0.462 0.330 0.321 0.316 0.294 0.334 0.330 0.321 22) methyl aceta

23) methyl tert 1.941 1.490 1.759 1.758 1.672 1.561 1.625 1.752 1.695 24) trans-1,2-di 0.469 0.441 0.483 0.483 0.456 0.435 0.462 0.477 0.463

25) di-isopropyl 1.224 1.294 1.479 1.492 1.405 1.330 1.371 1.390 1.373 0.057 0.053 0.052 0.052 0.047 0.052 26) 2-butanone

27) 1,1-dichloro 0.797 0.753 0.926 0.906 0.894 0.832 0.833 0.885 0.853 28) chloroprene 0.615 0.772 0.789 0.746 0.701 0.725 0.754 0.729

29) acrylonitril 0.127 0.106 0.153 0.153 0.143 0.139 0.131 0.150 0.138 11.62 31) ethyl tert-b 1.984 1.703 1.690 1.698 1.648 1.508 1.627 1.631 1.686 8.05

32) ethyl acetat 0.057 0.057 0.053 0.052 0.039 0.052 0.052 33) 2,2-dichloro 1.081 0.946 1.022 1.060 1.016 0.939 1.018 1.062 1.018 5.14

34) cis-1,2-dich 0.524 0.463 0.534 0.532 0.508 0.495 0.492 0.524 0.509 4.84 35) propionitril 0.050 0.049 0.059 0.060 0.056 0.055 0.058 0.058 7.36 0.471 0.479 0.443 0.435 0.376 0.455 0.443 36) methylacryla

37) bromochlorom 0.258 0.275 0.288 0.290 0.268 0.267 0.261 0.279 0.273 38) tetrahydrofu 0.134 0.136 0.135 0.114 0.171 0.152 0.140

39) chloroform 1.144 0.927 1.044 1.046 1.009 0.949 0.958 1.047 1.016

40) dibromofluor 0.574 0.542 0.545 0.541 0.477 0.535 0.535 0.536 5.42 41) 1,2-dichloro 0.853 0.775 0.802 0.815 0.662 0.815 0.806 0.790 7.69 42) freon 113 0.303 0.405 0.404 0.389 0.378 0.378 0.401 0.380 9.38

Page 2 of 3 V1C2051-1CC2051 1C49264.D Initial Calibration Summary
Job Number: J85904
Account: EHTXF Entact Houston
Project: Chevron, Perth Amboy Sample: Lab FileID:

431	methacryloni	0 210	0.199	0.293	0.284	0.263	0.262	0.257	0.276	0.255	13.20
441	1,1,1-trichl	1 099	0.133	1 104	1 129	1 120	0 995	1.027	1.142	1.073	6.13
44)	Cyclohexane	1.099	0.572	0 606	0 600	0 674	0.555	0 634	0 723	0 640	11 36
45)	Cyctonexane	0.509	0.556	0.000	0.030	0.074	0.045	0.004	0.723	0.040	11.50
46)	I 1,4-diflu	oroben	zene				ISTD				
471	epichlorohyd		0.031	0.036	0.037	0.037	0.033	0.037	0.035	0.035	6.45
48)	n-butyl alco	0.011	0.008	0.009	0.009	0.009	0.008	0.009	0.009	0.009#	10.44
491	carbon tetra	0.732	0.683	0.813	0.848	0.792	0.733	0.748	0.826	0.772	7.32
50)	1,1-dichloro	0.506	0.459	0.535	0.545	0.520	0.488	0.502	0.526	0.510	5.44
51)	hovano	0.000	0,103	0.346	0.358	0 315	0 327	0.328	0.330	0.334	4.58
2 T J	hexane benzene	1 422	1 220	1 230	1 3/13	1 283	1 239	1 244	1 318	1 303	5.00
54)	tert-amyl me	1.423	1.230	1.333	1 202	1.200	1 204	1 272	1 274	1.305	1 27
53)	tert-amyl me	1.325	1.2/2	1.336	1.382	1.014	1.204	1.2/4	0.160	0.105	4.27
54)	heptane			0.170	0.172	0.153	0.163	0.162	0.169	0.165	4.41
55)	isopropyl ac	0.511	0.574	0.693	0.704	0.663	0.608	0.623	0.640	0.627	10.13
56)	1,2-dichloro	0.712	0.645	0.714	0.753	0.712	0.626	0.686	0.708	0.695	5.91
57)	trichloroeth	0.393	0.361	0.401	0.398	0.391	0.368	0.356	0.391	0.382	4.58
58)	2-nitropropa			0.355	0.370	0.379	0.309		0.365	0.356	7.69
591	2-chloroethy	0 191	0.193	0.229	0.224	0.216	0.207	0.208	0.216	0.211	6.43
601	methyl metha	0.131	3,130	0.249	0 340	0 321	0.328		0.312	0.330	4.49
(1)	1,2-dichloro	0 213	0.294	0.344	0.340	0.325	0.320	0 327	0.338	0 323	6.09
ρT)	dibromometha	0.313	0.204	0.744	0.074	0.020	0.016	0.047	0.004	0.025	7 30
62)	dibromometha	0.301	0.237	0.273	0.274	0.209	0.246	0.237	0.274	0.200	10.35
63)	methylcycloh		0.381	0.529	0.526	0.492	0.501	0.495	0.513	0.491	10.30
64)	bromodichlor	0.587	0.554	0.654	0.658	0.620	0.588	0.590	0.626	0.610	5.94
65)	cis-1,3-dich	0.643	0.593	0.667	0.654	0.630	0.614	0.600	0.629	0.629	4.10
66)	toluene-d8 (1.462	1.400	1.367	1.348	1.246	1.326	1.327	1.354	4.96
671	4-methvl-2-p			0.134	0.129	0.130	0.120	0.115	0.126	0.125	5.60
68)	toluene	0.812	0.769	0.923	0.907	0.863	0.855	0.830	0.881	0.855	5.90
691	3-methv1-1-b			0.016	0.016	0.016	0.014	0.014	0.015	0.015	5.86
701	trans-1,3-di	0.685	0.590	0.717	0.720	0.681	0.650	0.645	0.681	0.671	6.31
711	ethv1 methac	0.362	0.320	0.486	0.472	0.454	0.446	0.385	0.432	0.420	13.82
721	1.1.2-trich1	0.287	0.231	0.279	0.276	0.262	0.257	0.253	0.267	0,264	6.66
	2-hexanone			0.141	0.137	0.131	0.132	0.119	0.133	0.132	5.55
741	I chlorober	17606-0	÷5				ISTD				
751	tetrachloroe	n 359	n 325	กรจล	0 399	0 382	0 361	0.360	0.396	0.373	6.95
75)	1,3-dichloro	0.000	0.020	0.553	0.055	0.536	0.501	0 498	0 554	0.519	6.77
70)	butyl acetat	0.490	0.102	0.333	0.333	0.000	0.301	0.193	0.331	0.019	9 59
7.7)	dibromochlor	0 100	0.100	0.217	0.220	0.210	0.101	0.100	0.202	0.133	9.20
/8)	dibromochior	0.466	0.384	0.517	0.323	0.400	0.400	0.400	0.401	0.471	
79)	1,2-dibromoe	0.331	0.308	0.362	0.358	0.346	0.329	0.331	0.330	0.339	
80)	n-butyl ethe			0.014	0.014	0.011	0.014		0.011	0.013	14.67
81)	chlorobenzen	1.102	0.978	1.129	1,129	1.085	1.034	1.063	1.105	1.078	4.78
82)	1,1,1,2-tetr	0.554	0.447	0.515	0.518	0.500	0.464	0.485	0.523	0.501	6.90
83)	ethylbenzene	1.838	1.645	1.879	1.907	1.834	1.736	1.750	1.902	1.811	5.13
	m,p-xylene	0.692	0.624	0.745	0.743	0.722	0.687	0.706	0.739	0.707	5.72
	o-xylene	0.699	0.620	0.757	0.757	0.734	0.696	0.654	0.764	0.710	7.40
	styrene				1.249						8.35
	bromoform	0.403	0.335	0.445	0.446	0.420	0.397	0.375	0.418	0,405	9.06
J,,	DI CHOICE III					_ •		_			
881	I 1,4-dich	lorobe	nzene-	d			ISTD				
Q Q 1	isopropylben	2 459	2.093	- 2.คี4ก	2,614	2.387	2.526	2.221	2.467	2.426	7.76
	4-bromofluor		U 032	U 01 %	0.911	0 863	0 841	0.859	0.881	0.887	3.90
			U. 200		0.044						5.10
91)	cyclohexanon	0 017	0.760								5.88
92)	bromobenzene	0.91/	0.768	0.908	0.898	0.03/	0.009	0.01/	0.004	0.007	
93)	1,1,2,2-tetr	0.749	0.581	0.660	0.660	0.634	0.612	0.599	0.033	0.041	8.09
94	trans-1,4-di	0.340	0.224	0.301	U.297	0.284	0.278	0.279	0.288	0.28/	11.22
95)	1,2,3-trichl	0.254	0.205	0.247	0.244	0.237	0.223	0.229	0.225	0.233	6.73
96	n-propylbenz	3.137	2.813	3.380	3.299	3.098	3,190	2.886	3.235	3.130	6.23
97	2-chlorotolu	2.510	2.151	2.479	2.490	2.357	2.308	2.312	2.435	2.380	5.14
98	4-chlorotolu	2.264	1.948	2.262	2.265	2.142	2.117	2.015	2.172	2.148	5.55
99	1,3,5-trimet	2.429	2.207	2.588	2.581	2,415	2.406	2.334	2.428	2.424	5.10

Job Number: J85904 Account: EHTXF Entact Houston

Project: Chevron, Perth Amboy

Lab FileID: 1C49264.D

Sample:

V1C2051-ICC2051

100) tert-butylbe 1.836 1.556 1.867 1.884 1.768 1.705 1.689 1.551 1.732 7.55 101) pentachloroe 0.570 0.552 0.631 0.637 0.600 0.589 0.556 0.594 0.591 5.34 102) 1,2,4-trimet 2.604 2.277 2.673 2.683 2.571 2.474 2.348 2.551 2.523 5.82 103) sec-butylben 2.554 2.333 2.942 2.953 2.704 2.746 2.575 2.790 2.700 7.72 104) 1,3-dichloro 1.630 1.440 1.625 1.619 1.568 1.507 1.463 1.585 1.555 4.84 105) p-isopropylt 2.323 2.108 2.708 2.728 2.495 2.503 2.387 2.564 2.477 8.26 106) 1,4-dichloro 1.704 1.542 1.680 1.675 1.618 1.544 1.593 1.666 1.628 3.88 107) benzyl chlor 2.015 1.831 1.937 1.975 1.958 1.829 1.825 1.894 1.908 3.89 108) 1,2-dichloro 1.561 1.371 1.522 1.500 1.392 1.394 1.386 1.450 1.447 5.02 109) n-butylbenze 2.036 1.789 2.172 2.162 1.953 2.021 1.853 2.064 2.006 6.79 110) 1,2-dibromo- 0.164 0.143 0.162 0.164 0.154 0.145 0.173 0.155 0.157 6.51 111) 1,2,4-trichl 0.951 0.772 0.915 0.921 0.848 0.803 0.808 0.849 0.859 7.49 112) hexachlorobu 0.477 0.383 0.526 0.518 0.450 0.466 0.409 0.481 0.464 10.63 113) naphthalene 1.676 1.446 1.699 1.728 1.612 1.399 1.515 1.584 1.582 114) 1,2,3-trich1 0.502 0.483 0.490 0.540 0.500 0.357 0.456 0.489 0.477 7.60 11.27 115) hexachloroet 0.543 0.422 0.597 0.584 0.535 0.552 0.543 0.540 0.539 _____

(#) = Out of Range ### Number of calibration levels exceeded format ###

M1C2051.M

Fri Mar 21 12:24:59 2008 MS1C

V1C2052-ICV2051 Sample: Job Number: J85904 Lab FileID: 1C49273.D

EHTXF Entact Houston Account: Chevron, Perth Amboy Project:

Evaluate Continuing Calibration Report

Data File : C:\MSDCHEM\1\DATA\V1C2052\1C49273.D Vial: 16 Operator: MaoH Acq On : 13 Mar 2008 8:31 pm Inst : MS1C : icv2051-50 Sample Misc : MS61890, V1C2052, 5, , 100, 5, 1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Method : C:\MSDCHEM\1\METHODS\M1C2051.M (RTE Integrator)
Title : SW-846 Method 8260B
Last Update : Thu Mar 13 17:13:49 2008 Response via : Multiple Level Calibration

: 0.010 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev: 20% Max. Rel. Area: 200%

Compound	AvgRF	CCRF	%Dev	Area%	Dev(m	in)R.T.
1 I Tert Butyl Alcohol-d9	1.000	1.000	0.0	114		9.18
2 tertiary butyl alcohol	1.088	1.143	-5.1		0.00	9.31
3 1,4-dioxane	0.070	0.068	2.9	111	0.00	13.30
			2 0	- 0.0	0.00	31 50
4 I pentafluorobenzene	1.000	1.000	0.0		0.00	11.59 5.08
5 chlorodifluoromethane	0.622	0.631	-1.4		0.00	5.00
6 dichlorodifluoromethane		0.761	-12.2		0.00	5.53
7 chloromethane	0.582	0.630	-8.2 -17.9		0.00 0.00	5.85
<pre>8 vinyl chloride</pre>	0.541	0.638			0.00	6.66
9 bromomethane	0.373	0.429	-15.0			6.87
10 chloroethane	0.275	0.312	-13.5		0.00 -0.01	7.46
11 trichlorofluoromethane		1,060	-6.9			7.40
12 ethyl ether	0.217	0.254	-17.1	116	0.00	1.93
	True	Calc.	% Drif	t		
13 acrolein		3345.653				3 8.23
		CCRF	% Dev			
14 1,1-dichloroethene		0.450	-9.5			
15 acetone	0.150	0.159	-6.0		0.00	8.51
16 allyl chloride	1.179	1.379	-17.0		0.00	9.03
17 acetonitrile	0.037	0.041	-10.8		-0.01	9.03
18 iodomethane	0.879	1.017			0.00	8.76
19 iso-butyl alcohol	0.007	0.007#			0.00	11.91
20 carbon disulfide	1.385	1.580	-14.1		0.00	8.92
21 methylene chloride	0.462	0.494	-6.9		0.00	9.25
22 methyl acetate	0.321	0.319	0.6		0.00	9.01
23 methyl tert butyl ether		1.745	-2.9		0.00	9.60
24 trans-1,2-dichloroether			-8.0		0.00	9.67
25 di~isopropyl ether	1.373		-4.1		0.00	10.24
26 2-butanone	0.052	0.056	-7.7		0.00	11.03
27 1,1-dichloroethane	0.853	0.915	-7.3		0.00	10.28
28 chloroprene	0.729		-3.4		0.00	10.40
29 acrylonitrile	0.138		4.3		0.00	9.60
30 vinyl acetate	0.077		-2.6		0.00	10.25
31 ethyl tert-butyl ether	1.686		3.1		0.00	10.74
32 ethyl acetate	0.052		-5.8		0.00	11.03
33 2,2-dichloropropane	1.018		2.6		0.00	11.07
34 cis-1,2-dichloroethene	0.509		-1.6		0.00	11.07
35 propionitrile	0.055		10.9		0.00	11.12
36 methylacrylate	0.443		-1.1		0.00	11.13
37 bromochloromethane	0.273	0.289	-5.9	108	0.00	11.40

Initial Calibration Verification

Initial (Job Numb Account: Project:	Calibration Verification Dex: J85904 EHTXF Entact Houston Chevron, Perth Amboy			Sample: Lab FileID:		2052-ICV2 273.D	Page 2 of 3 051
38	tetrahydrofuran	0.140	0.135	3.6	107	0.00	11.45
39	chloroform	1.016	1.037	-2.1	107	0.00	11.45
40 S	dibromofluoromethane (s)	0.536	0.531	0.9	105	0.00	11.66
41 S	1,2-dichloroethane-d4 (s)	0.790	0.754	4.6	102	0.00	12.11
42	freon 113	0,380	0.415	-9.2	111	-0.01	8.40
43	methacrylonitrile	0.255	0.281	-10.2	107	0.00	11.32
44	1,1,1-trichloroethane	1.073	1,112	-3.6	107	0.00	11.73
45	Cyclohexane	0.640	0.542	15.3	85	0.00	11.81
46 I	1,4-difluorobenzene	1.000	1.000	0.0	110	0.00	12.56
47	epichlorohydrin	0.035	0.035	0.0	104	0.00	13.85
48	n-butyl alcohol	0.009	0.009#		109	0.00	12.67
49	carbon tetrachloride	0.772	0.828	-7.3	107	0.00	11.94
50	1,1-dichloropropene	0.510	0.544	-6.7 0.0	109 102	0.00	11.91 9.98
51	hexane	0.334 1.303	0.334	-5.8	113	0.00	12.18
52	benzene		1.263	3.3	100	0.00	12.20
53	tert-amy1 methy1 ether	1.306 0.165	0.151	8.5	96	0.00	12.34
54	heptane	0.627	0.659	-5.1	103	0.00	12.07
55 56	isopropyl acetate 1,2-dichloroethane	0.695	0.733	-5.5	107	0.00	12.19
56 57	trichloroethene	0.382	0.415	-8.6	114	0.00	12.92
58	2-nitropropane	0.356	0.355	0.3	105	0.00	14.05
59	2-chloroethyl vinyl ether	0.211	0.213	-0.9	104	0.00	13.71
60	methyl methacrylate	0.330	0.332	-0.6	107	0.00	13.16
61	1,2-dichloropropane	0.323	0.346	-7.1	111	0.00	13.19
62	dibromomethane	0.266	0.267	-0.4	107	0.00	13.37
63	methylcyclohexane	0.491	0.509	-3.7	106	0.00	13.15
64	bromodichloromethane	0.610	0.628	-3.0	105	0.00	13.49
65	cis-1,3-dichloropropene	0,629	0.668	-6.2	112	0.00	13.96
66 S	toluene-d8 (s)	1.354	1.328	1.9	106	0.00	14.27
67	4-methy1-2-pentanone	0.125	0.133	-6.4	113	0.00	14.04
68	toluene	0.855	0.931	-8.9	112	0.00	14.34
69	3-methyl-1-butanol	0.015	0.016	-6.7	107	0.00	14.06
70	trans-1,3-dichloropropene	0.671	0.704	-4.9	107	0.00	14.54 14.51
71	ethyl methacrylate	0.420	0.472	-12.4 -5.3	110 110	0.00	14.77
72 73	<pre>1,1,2-trichloroethane 2-hexanone</pre>	0.264 0.132	0.278 0.138	-4.5	110	0.00	14.93
71 -	chlorobenzene-d5	1.000	1.000	0.0	110	0.00	15.88
74 I 75	tetrachloroethene	0.373	0.398		110	0.00	14.97
75 76	1,3-dichloropropane	0.519	0.559		111	0.00	14.97
77	buty1 acetate	0.199	0.211		106	0.00	15.00
78	dibromochloromethane	0.471	0.506		107	0.00	15.27
79	1,2-dibromoethane	0.339	0.368		114	0.00	15.43
80	n-butyl ether	0.013	0.014	-7.7	114	0.01	15.78
81	chlorobenzene	1.078	1.138	-5.6	111	0.00	15.91
82	1,1,1,2-tetrachloroethane	0.501	0.525	-4.8	112	0.00	15.97
83	ethylbenzene	1.811	1.930	-6.6	112	0.00	15,96
84	m,p-xylene	0.707	0.762		113	0.00	16.07
85	o-xylene	0.710	0.764		111	0.00	16.52
86	styrene	1.144	1.314		116	0.00	16.53
87	bromoform	0.405	0.434	-7.2	108	0.00	16.83
88 I	1,4-dichlorobenzene-d4	1.000	1.000		110	0.00	18.38
89	isopropylbenzene	2.426	2.544		107	0.00	16.88
90 S	4-bromofluorobenzene (s)	0.887	0.882		106	0.00	17.11
91	cyclohexanone	0.042	0.043		107	0.00	14.06
92	bromobenzene	0.857	0.923		113 114	0.00	17.33 17.20
93	1,1,2,2-tetrachloroethane	0.641	0.682		105	0.00	17.24
94	trans-1,4-dich1oro-2-bute	0.287	0.285	0.7	T03	0.00	11.27

Page 3 of 3

Job Numb Account: Project:	Der: J85904 EHTXF Entact Houston Chevron, Perth Amboy			Sample: Lab FileID:		2052-ICV2 9273.D	2051
95	1,2,3-trichloropropane	0.233	0.217	6.9	98	0.00	17.29
96	n-propylbenzene	3.130	3.398	-8.6	113	0.00	17.31
97	2-chlorotoluene	2.380	2.501	-5.1	110	0.00	17.49
98	4-chlorotoluene	2.148	2.278	-6.1	110	0.00	17.59
99	1,3,5-trimethylbenzene	2.424	2.645	-9.1	113	0.00	17.46
100	tert-butylbenzene	1.732	1.882	-8.7	110	0.00	17.85
101	pentachloroethane	0.591	0.618	-4.6	107	0.00	17.96
102	1,2,4-trimethylbenzene	2.523	2,727	-8.1	112	0.00	17.90
103	sec-buty1benzene	2.700	2.930	-8.5	109	0.00	18.08
104	1,3-dichlorobenzene	1.555	1.606		109	0.00	18.31
105	p+isopropyltoluene	2.477	2.594	-4.7	104	0.00	18.20
106	1,4-dichlorobenzene	1.628	1.674	-2.8	110	0.00	18.40
107	benzyl chloride	1.908	1.777	6.9	99	0.00	18.52
108	1,2-dichlorobenzene	1.447	1.520	-5.0	111	0.00	18.84
109	n-butylbenzene	2.006	2.128	-6.1	108	0.00	18.65
110	1,2-dibromo-3-chloropropa	0.157	0.159	-1.3	107	0.00	19.68
111	1,2,4-trichlorobenzene	0.859	0.898		107	0.00	20.62
112	hexachlorobutadiene	0.464	0.512	-10.3	108	0.00	20.73
113	naphthalene	1.582	1.738	-9.9	111	0.00	20.97
114	1,2,3-trichlorobenzene	0.477	0.524	-9.9	107	0.00	21.26
115	hexachloroethane	0.539	0.542	-0.6	102	0.00	19.14

(#) = Out of Range SPCC's out = 0 CCC's out = 0 1C49264.D M1C2051.M Fri Mar 21 15:22:23 2008 MS1C

Lab FilelD:

1C49674.D

EHTXF Entact Houston Account:

Project:

Chevron, Perth Amboy

Evaluate Continuing Calibration Report

Data File : C:\MSDCHEM\1\DATA\1C\V1C2071\1C49674.D Vial: 2 Operator: MaoH Acq On : 26 Mar 2008 9:59 am Inst : MS1C : cc2051-20 Sample Misc : MS62347, V1C2071, 5, ,100, 5, 1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Method : C:\MSDCHEM\1\METHODS\M1C2051.M (RTE Integrator)
Title : SW-846 Method 8260B
Last Update : Thu Mar 13 17:13:49 2008 Response via : Multiple Level Calibration

Min. RRF : 0.010 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 20% Max. Rel. Area : 200%

	Compound	AvgRF	CCRF	%Dev Area%	Dev(mi	n)R.T.
1 I	Tert Butyl Alcohol-d9	1,000	1.000	0.0 130	0.01	9.20
2	tertiary butyl alcohol	1.088	1.119	-2.8 123	0.00	9.32
3	1,4-dioxane	0.070	0.051	27.1# 94	0.00	13.31
4 I	pentafluorobenzene	1.000	1.000	0.0 118	0.00	11.59
5	chlorodifluoromethane	0.622	0.676	-8.7 121	0.00	5.07
6	dichlorodifluoromethane	0.678	0.788	-16.2 131	0.00	5.04
7	chloromethane	0.582	0.684	-17.5 142	0.00	5.52
8	vinyl chloride	0.541	0.624	-15.3 138	0.00	5.85
9	bromomethane	0.373	0.395	-5.9 127	-0.01	6.65
10	chloroethane	0.275	0.290	-5.5 124	0.00	6.87
11	trichlorofluoromethane	0.992	1.055	-6.4 121	-0.01	7,46
12	ethyl ether	0.217	0.230	-6.0 125	0.00	7.93
	***	True	Calc.	% Dríft		
13	acrolein	200.000		-360.2# 628	0.00	8.25
		3	CODE	% Dev		
		0.411	CCRF 0.389	5.4 111	0.00	8.44
14	1,1-dichloroethene	0.411	0.148	1.3 130	0.02	8.53
15	acetone	1.179	1.196	-1.4 106	0.00	9.04
16	allyl chloride	0.037	0.035	5.4 107	-0.02	9.01
17	acetonitrile	0.879	0.033	4.8 110	0.00	8.77
18	iodomethane	0.007	0.006#	14.3 98	0.00	11.92
19	iso-butyl alcohol carbon disulfide	1.385	1.257	9.2 110	0.00	8.92
20 21	methylene chloride	0.462	0.445	3.7 115	0.00	9.26
22	methyl acetate	0.321	0.338	-5.3 126	0.01	9.03
23	methyl acetate methyl tert butyl ether	1.695	1.612	4.9 114	0.00	9.60
24	trans-1,2-dichloroethene	0.463	0.435	6.0 113	0.00	9.67
2 4 25	di-isopropyl ether	1.373	1.449	-5.5 122	0.00	10.24
26	2-butanone	0.052	0.049	5.8 111	0.03	11.05
27	1,1-dichloroethane	0.853	0.829	2.8 110	0.00	10.28
28	chloroprene	0.729		-6.3 123	0.00	10.41
29	acrylonitrile	0.138	0.145	-5.1 120	0.01	9.62
30	vinyl acetate	0.077	0.075	2.6 133	0.02	10.27
31	ethyl tert-butyl ether	1.686	1.633	3.1 117	0.00	10.74
32	ethyl acetate	0.052	0.059	-13.5 131	0.00	11.04
33	2,2-dichloropropane	1.018		18.1 97	0.00	11.08
34	cis-1,2-dichloroethene	0.509		3.3 114	0.00	11.08
35	propionitrile	0.055		-3.6 119	0.00	11.13
36	methylacrylate	0.443		1.4 117	0.01	11.14
30 37	bromochloromethane	0.273	0.254	7.0 112	0.00	11.41
		,				

Conting Job Numb Account: Project:	uing Calibration Summary Der: J85904 EHTXF Entact Houston Chevron, Perth Amboy			Sample: Lab FileID:	V1C29	071-CC20 674.D	Page 2 of 3 051
38 39	tetrahydrofuran chloroform	0.140 1.016	0.121 0.943	13.6 7.2	105	0.01	11.45 11.45
39 40 S	dibromofluoromethane (s)	0.536	0.496	7.5	108	0.00	11.66
40 S	1,2-dichloroethane-d4 (s)	0.790	0.706	10.6	102	0.00	12.10
42	freon 113	0.380	0.452	-18.9	137	0.00	8.40
43	methacrylonitrile	0.255	0.262	-2.7	118	0.02	11.34
44	1,1,1-trichloroethane	1.073	0.993	7.5	105	0.00	11.73
45	Cyclohexane	0.640	0.602	5.9	106	0.00	11.81
46 I	1,4-difluorobenzene	1.000	1.000	0.0	113	0.00	12.55
47	epichlorohydrin	0.035	0.031	11.4	95	0.00	13.86
48	n-butyl alcohol	0.009	0.008#		97	0.02	12.68
49	carbon tetrachloride	0.772	0.733	5.1 1.6	104 109	0.00	11.94 11.91
50	1,1-dichloropropene	0.510 0.334	0.318	4.8	114	0.00	9,99
51 52	hexane benzene	1.303	1.258	3,5	111	0.00	12.19
53	tert-amyl methyl ether	1.306	1.271	2.7	109	0.00	12.20
54	heptane	0.165	0.146	11.5	107	0.00	12.34
55	isopropyl acetate	0.627	0.683	-8.9	116	0.00	12.07
56	1,2-dichloroethane	0.695	0.642	7.6	102	0.00	12.19
57	trichloroethene	0.382	0.367	3.9	106	0.00	12.92
58	2-nitropropane	0.356	0.349	2.0	104	0.00	14.06
59	2-chloroethyl vinyl ether	0.211	0.172	18.5	90	0.00	13.71
60	methyl methacrylate	0.330	0.324	1.8	114	0.00	13.17
61	1,2-dichloropropane	0.323	0.320	0.9	111	0.00	13.19
62	dibromomethane	0.266	0.245	7.9	103	0.00	13.36
63	methylcyclohexane	0.491	0.485 0.573	1.2 6.1	111 104	0.00	13.15 13.49
64 65	bromodichloromethane	0.610 0.629	0.574	8.7	103	0.00	13.96
66 S	cis-1,3-dichloropropene toluene-d8 (s)	1.354	1.260	6.9	105	0.00	14.27
67	4-methyl-2-pentanone	0.125	0.128	-2.4	112	0.00	14.04
68	toluene	0.855	0.821	4.0	107	0.00	14.35
69	3-methyl-1-butanol	0.015	0.014	6.7	101	0.01	14.06
70	trans-1,3-dichloropropene	0.671	0.601	10.4	99	0.00	14.54
71	ethyl methacrylate	0.420	0.427	-1.7	106	0.00	14.51
72	1,1,2-trichloroethane	0.264	0.243	8.0	105	0.00	14.77
73	2-hexanone	0.132	0.122	7.6	105	0.00	14.94
74 I	chlorobenzene-d5	1.000	1.000	0.0	102	0.00	15.88
75	tetrachloroethene	0.373	0.396	-6.2 -5.2	106 104	0.00	14.97 14.97
76	1,3-dichloropropane	0.519 0.199	0.546 0.221	-11.1	104	0.00	15.00
77 78	butyl acetate dibromochloromethane	0.471	0.469		99	0.00	15.26
7.6 7.9	1,2-dibromoethane	0.339	0.335		99	0.00	15.43
80	n-butyl ether	0.013	0.013		122	0.02	15.78
81	chlorobenzene	1.078	1.073		101	0.00	15.91
82	1,1,1,2-tetrachloroethane	0.501	0.497	0.8	101	0.00	15.97
83	ethylbenzene	1.811	1.787		99	0.00	15.96
8 4	m,p-xylene	0.707	0.700		99	0.00	16.07
85	o-xylene	0.710	0.719		100	0.00	16.52
86	styrene	1.144	1.107		96	0.00	16.53
87	bromoform	0.405	0.376	7.2	91	0.00	16.83
88 I	1,4-dichlorobenzene-d4	1.000	1.000		91	0.00	18.37
89	isopropylbenzene	2.426	2.512		96	0.00	15.88
90 S	4-bromofluorobenzene (s)	0.887	0.872		92	0.00	17.11
91	cyclohexanone	0.042	0.047		101	0.01	14.06
92 93	bromobenzene 1,1,2,2-tetrachloroethane	0,857 0.641	0.846 0.661		92 95	0.00	17.34 17.20
93 94	trans-1,4-dichloro-2-bute	0.287	0.237		76	0.00	17.24
2 1	crafts-1'4-droutoro-5-parce	U . Z U 1	0.201	±,	, 5		22.

Page 3 of 3

Account: EH	904 TXF Entact Houston evron, Perth Amboy			Sample: Lab FileID:		2071-CC2 9674.D	() 51
95 1,2,3-	trichloropropane	0.233	0.242	-3.9	93	0.00	17.29
96 n-prop	ylbenzene	3.130	3.057	2.3	90	0.00	17.31
97 2-chlc	rotoluene	2.380	2.317	2.6	90	0.00	17.49
98 4-chlc	rotoluene	2.148	2.068	3.7	88	0.00	17.59
99 1,3,5-	trimethylbenzene	2.424	2.384	1.7	90	0.00	17.46
100 tert-b	outylbenzene	1.732	1.463	15.5	76	0.00	17.85
101 pentac	chloroethane	0.591	0.592	-0.2	90	0.00	17.96
102 1,2,4-	trimethylbenzene	2.523	2.551	-1.1	91	0.00	17.90
103 sec-bu	ntylbenzene	2.700	2.724	-0.9	92	0.00	18.08
104 1,3-di	chlorobenzene	1.555	1.486	4.4	87	0.00	18.31
105 p-isop	propyltoluene	2.477	2.461	0.6	90	0.00	18.20
106 1,4-di	chlorobenzene	1.628	1,552	4.7	88	0.00	18.40
107 benzyl	chloride	1.908	1.197	37.3#	56	0.00	18.52
108 1,2-di	chlorobenzene	1.447	1,461	-1.0	96	0.00	18.84
109 n-buty	/lbenzene	2.006	1.897	5.4	89	0.00	18.65
110 1,2-di	bromo-3-chloropropa	0.157	0.155	1.3	92	0.00	19.68
111 1,2,4-	trichlorobenzene	0.859	0.589	31.4#	63	0.00	20.62
112 hexach	nlorobutadiene	0.464	0.478	-3.0	97	0.00	20.73
113 naphth	nalene	1.582	1.095	30.8#	62	0.00	20.97
114 1,2,3-	-trichlorobenzene	0.477	0.462	3.1	85	0.00	21.25
115 hexach	nloroethane	0.539	0.546	-1.3	93	0.00	19.14

(#) = Out of Range SPCC's out = 0 CCC's out = 0 1C49263.D M1C2051.M Thu Mar 27 11:50:05 2008 NJVOA03

Page 1 of 3

Account:

EHTXF Entact Houston

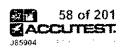
Chevron, Perth Amboy Project:

V1C2073-CC2051 Sample: Lab FileID: 1C49718.D

Evaluate Continuing Calibration Report

Data File : C:\MSDCHEM\1\DATA\1C\V1C2073\1C49718.D Vial: 2 Operator: MaoH Acq On : 27 Mar 2008 9:14 am Inst : MS1C Sample : cc2051-20 Multiplr: 1.00 Misc : MS62302, V1C2073, 5, , 100, 5, 1

MS Integration Params: RTEINT.P


Method : C:\MSDCHEM\1\METHODS\M1C2051.M (RTE Integrator)
Title : SW-846 Method 8260B
Last Update : Thu Mar 13 17:13:49 2008 Response via : Multiple Level Calibration

Min. RRF : 0.010 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. RRF Dev : 20% Max. Rel. Area : 200%

	Compound	AvgRF	CCRF	%Dev A	rea%	Dev(mi	n)R.T.
1 I	Tert Butyl Alcohol-d9	1.000	1.000		90	0.00	9.19
2	tertiary butyl alcohol	1.088	1.105			0.02	9.33
3	1,4-dioxane	0.070	0.061	12.9	78	0.00	13.31
4 I	pentafluorobenzene	1.000	1.000	0.0	96	0.00	11.59
5	chlorodifluoromethane	0.622	0.753	-21.1#		0.00	5.08
6	dichlorodifluoromethane	0.678	0.897	-32.3#	121	0.00	5.04
7	chloromethane	0.582	0.680	-16.8	115	-0.02	5.51
8	vinyl chloride	0.541	0.618	-14.2	111	0.00	5.85
9	bromomethane	0.373	0.388	-4.0	101	-0.01	6.65
10	chloroethane	0.275		-8.0	103	0.00	6.87
11	trichlorofluoromethane	0.992	1.136	-14.5	106	0.00	7.47
12	ethyl ether	0.217	0.216	0.5	95	0.00	7.93
		True	Calc.	% Drift			
13	acrolein			-218.4#		0.00	8.25
		Nes-DE	CCRF	% Dev			
1.4		0.411		5.4	90	0,00	8.44
14	1,1-dichloroethene	0.150	0.369		100	0.02	8.53
15	acetone			3.4	82	0.00	9.04
16	allyl chloride	1.179	0.034	8.1	84	0.00	9.03
17	acetonitrile	0.037		4.2	90	0.00	8.77
18	iodomethane	0.007		14.3	78	0.00	11.92
19	iso-butyl alcohol	1.385		9.7	89	0.00	8.92
20	carbon disulfide	0.462		5.4	92	0.00	9.25
21	methylene chloride	0.462		4.7	93	0.01	9.03
22	methyl acetate	1.695		6.7	91	0.00	9,60
23	methyl tert butyl ether	0.463		7.6	90	0.00	9.67
24	trans-1,2-dichloroethene	1.373		-2.2	96	0.00	10.24
25 26	di-isopropyl ether 2-butanone	0.052	0.044	15.4	82	0.02	11.04
		0.853		-0.4	92	0.00	10.28
27	1,1-dichloroethane	0.729		-13.6	106	0.00	10.40
28 29	chloroprene acrylonitrile	0.138		9.4	84	0.00	9.62
30		0.077		23.4#		0.02	10.27
	vinyl acetate	1.686		$\frac{23.4\pi}{3.5}$	95	0.00	10.74
31 32	ethyl tert-butyl ether	0.052		15.4	79	0.02	11.05
	ethyl acetate	1.018		27.5#		0.02	11.03
33 34	2,2-dichloropropane cis-1,2-dichloroethene	0.509		4.1	92	0.00	11.00
34 35	propionitrile	0.055		9.1	85	0.00	11.13
35 36	methylacrylate	0.033		18.5	78	0.01	11.14
30 37	bromochloromethane	0.273		8.4	89	0.00	11.41
J .	2201100112020110011011011011011011011011						

Continuing Calibration Summary

Continu Job Numb Account: Project:	ving Calibration Summary Der: J85904 EHTXF Entact Houston Chevron, Perth Amboy			Sample: Lab FileID:		2073-CC20 0718.D	Page 2 of 3 051
38	tetrahydrofuran	0.140	0.105	25.0#	74	0.02	11.46
39	chloroform	1.016	0.998	1.8	95	0.00	11.46
40 S	dibromofluoromethane (s)	0.536	0.504	6.0	89	0.00	11.66
41 S	1,2-dichloroethane-d4 (s)	0.790	0.767	2.9	90	0.00	12.10
42	freon 113	0.380	0.460	-21.1#		-0.01	8.40
43	methacrylonitrile	0.255	0.232	9.0	85	0.02	11.34
44	1,1,1-trichloroethane	1.073	1.061	1.1	91	0.00	11.72 11.81
45	Cyclohexane	0.640	0.603	5.8	86	0.00	11,01
46 I	1,4-difluorobenzene	1.000	1.000	0.0	92	0.00	12.55
47	epichlorohydrin	0.035	0.025	28.6#	63 63	0.00 0.02	13.86 12.68
48	n-butyl alcohol	0.009	0.006#		94	0.02	11.94
49	carbon tetrachloride	0.772	0.815 0.505	-5.6 1.0	89	0.00	11.94
50	1,1-dichloropropene	0.510 0.334	0.286	14.4	83	0.00	9.99
51	hexane benzene	1.303	1.261	3.2	90	0.00	12.19
52 53	tert-amyl methyl ether	1.306	1.267	3.0	88	0.00	12.20
5 <i>3</i>	heptane	0.165	0.131	20.6#	78	0.00	12.34
55	isopropyl acetate	0.627	0.622	0.8	86	0.00	12.07
56	1,2-dichloroethane	0.695	0.718	-3.3	93	0.00	12.20
57	trichloroethene	0.382	0.382	0.0	90	0.00	12.92
58	2-nitropropane	0.356	0.281	21.1#	68	0.01	14.06
59	2-chloroethyl vinyl ether	0.211	0.172	18.5	73	0.00	13.71
60	methyl methacrylate	0.330	0.294	10.9	84	0.00	13.17
61	1,2-dichloropropane	0.323	0.316	2.2	89	0.00	13.19
62	dibromomethane	0.266	0.249	6.4	85	0.00	13.37
63	methylcyclohexane	0.491	0.492	-0.2	92	0.00	13.15
64	bromodichloromethane	0.610	0.600	1.6	89	0.00	13.48 13.96
65	cis-1,3-dichloropropene	0.629	0.548 1.271	12.9 6.1	80 86	0.00	14.27
66 S	toluene-d8 (s)	1.354 0.125	0.108	13.6	77	0.00	14.04
67 68	4-methyl-2-pentanone toluene	0.125	0.834	2.5	89	0.00	14.34
69	3-methy1-1-butanol	0.015	0.011	26.7#	63	0.02	14.07
70	trans-1,3-dichloropropene	0.671	0.597	11.0	80	0.00	14.54
71	ethyl methacrylate	0.420	0.397	5.5	80	0.00	14.51
72	1,1,2-trichloroethane	0.264	0.235	11.0	83	0.00	14.77
73	2-hexanone	0.132	0.099	25.0#	70	0.01	14.95
74 I	chlorobenzene-d5	1.000	1.000	0.0	84	0.00	15.88
75	tetrachloroethene	0.373	0.406	-8.8	89	0.00	14.97
76	1,3-dichloropropane	0.519	0.539		84	0.00	14.97
77	butyl acetate	0.199	0.180		72	0.00	15.00
78	dibromochloromethane	0.471	0.475		83	0.00	15.26
79	1,2-dibromoethane	0.339	0.327		79	0.00	15.43
80	n-butyl ether	0.013	0.011		86	0.02	15.78
81	chlorobenzene	1.078	1.074		83	0.00	15.91 15.97
82	1,1,1,2-tetrachloroethane	0.501	0.508		85 83	0.00	15.96
83	ethylbenzene	1.811	1.807 0.705		82	0.00	16.07
84	m,p-xylene	0.707 0.710	0.703		80	0.00	16.52
85	o-xylene	1.144	1.083		77	0.00	16.53
86 87	styrene bromoform	0.405	0.367		73	0.00	16.83
88 I	1,4-dichlorobenzene-d4	1.000	1.000	0.0	77	0.00	18.37
89	isopropylbenzene	2.426	2.469		80	0.00	16.87
90 S	4-bromofluorobenzene (s)	0.887	0.877		79	0.00	17.11
91	cyclohexanone	0.042	0.035		63	0.02	14.07
92	bromobenzene	0.857	0.841		78	0.00	17.34
93	1,1,2,2-tetrachloroethane	0.641	0.574		70 55	0.00	17.20
94	trans-1,4-dichloro-2-bute	0.287	0.201	30.0#	55	0.00	17.24

Contin Job Numb Account: Project:	uing Calibration Summary ber: J85904 EHTXF Entact Houston Chevron, Perth Amboy	itact Houston				2073-CC2 718.D	Page 3 of 3 051
95	1,2,3-trichloropropane	0.233	0,220	5.6	72	0.00	17.29
96	n-propylbenzene	3.130	3.006	4.0	75	0.00	17.31
97	2-chlorotoluene	2.380	2.334	1.9	77	0.00	17.49
98	4-chlorotoluene	2.148	2.064	3.9	74	0.00	17.59
99	1,3,5-trimethylbenzene	2.424	2.358	2.7	75	0.00	17.46
100	tert-butylbenzene	1.732	1.804	-4.2	79	0.00	17.85
101	pentachloroethane	0.591	0.582	1.5	75	0.00	17.96
102	1,2,4-trimethylbenzene	2.523	2.473	2.0	74	0.00	17,90
103	sec-butylbenzene	2.700	2.669	1.1	76	0.00	18.08
104	1,3-dichlorobenzene	1.555	1.458	6.2	72	0.00	18.31
105	p-isopropyltoluene	2.477	2.394	3.4	74	0.00	18.19
106	1,4-dichlorobenzene	1.628	1.502	7.7	72	0.00	18.40
107	benzyl chloride	1.908	0.767	59.8#	30#	0.00	18.52
108	1,2-dichlorobenzene	1.447	1.370	5.3	76	0.00	18.84
109	n-butylbenzene	2.006	1.818	9.4	72	0.00	18.65
110	1,2-dibromo-3-chloropropa	0.157	0.128	18.5	64	0.00	19.68
111	1,2,4-trichlorobenzene	0.859	0.539	37.3#	49#	0.00	20.62
112	hexachlorobutadiene	0.464	0.488	-5.2	84	0.00	20.73
113	naphthalene	1.582	0.842	46.8#	40#	0.00	20.97
114	1,2,3-trichlorobenzene	0.477	0.408	14.5	63	0.00	21.25
115	hexachloroethane	0.539	0.554	-2.8	80	0.00	19.14

(#) = Out of Range SPCC's out = 0 CCC's out = 0 1C49263.D Mic2051.M Mon Mar 31 16:06:40 2008 NJVOA03

Page 1 of 3

Sample: VG5266-ICC5266

Lab FileID: G108665.D

Initial Calibration Summary

Job Number: J85904

EHTXF Entact Houston Account: Chevron, Perth Amboy Project:

Response Factor Report MSG

Method : C:\HPCHEM\1\METHODS\MG5266.M (RTE Integrator)
Title : SW-846 Method 8260B

Last Update : Wed Mar 26 14:40:35 2008 Response via : Initial Calibration

Calibration Files

1 =G108661.D 5 =G108662.D 10 =G108663.D 50 =G108665.D 100 =G108666.D 200 =G108667.D 20 =G108664.D =

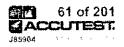
1 5 10 50 100 200 20

1) I Tert Butyl Alcohol-d9 -----ISTD-----ISTD-----

2) tertiary but 1.028 1.121 1.014 1.035 1.049 1.163 1.068 5.59 3) acetonitrile 0.546 0.540 0.366 0.363 0.421 0.330 0.428 22.01

---- Linear regression ---- Coefficient = 0.9934 Response Ratio = -0.01991 + 0.41428 *A

4) 1,4-dioxane 0.061 0.083 0.090 0.099 0.105 0.084 0.087 17.59 ---- Linear regression ---- Coefficient = 0.9989 Response Ratio = -0.02260 + 0.10649 *A


```
5) I pentafluorobenzene ------ISTD------
          ---- Linear regression ---- Coefficient = 0.9917
           Response Ratio = -0.00088 + 0.08487 *A
30) chloroprene 0.492 0.566 0.541 0.578 0.531 0.569 0.546 5.89 31) ethyl tert-b 1.445 1.346 1.424 1.360 1.449 1.310 1.394 1.390 3.81
```

---- Quadratic regression ---- Coefficient = 0.9960 Response Ratio = $-0.03229 + 0.03267 *A + -0.00021 *A^2$

Page 2 of 3

Initial Calibration Summary
Job Number: J85904
Account: EHTXF Entact Houston
Project: Chevron, Perth Amboy VG5266-ICC5266 G108665.D Sample: Lab FileID:

Projec	t: Cnevron,	Perui Amboy						
35) 36)	2,2-dichloro ethyl acetat cis-1,2-dich (methacryloni	0.679 0.393 0.397 0.187 adratic reg	0.672 0.68 0.396 0.41 0.228 0.26 ression	1 0.739 5 0.461 9 0.302	0.654 0.402 0.249	0.696 0.417 0.249 Coeffici	0.687 0.412 0.247 Lent =	4.69 4.23 5.81 15.71 0.9977
	Resi	ponse Ratio	= -0.02960	+ 0.352	247 *A	+ -0.02367	A^2	
39) 40) 41)	methyl acryl iso-butyl al chloroform bromochlorom tetrahydrofu Quare Res	0.823 0.210 0.144 adratic reg	0.786 0.78 0.204 0.22 0.114 0.07	3 0.855 8 0.260 8 0.085	0.768 0.232 0.065	0.805 0.224	0.000# 0.804 0.226 0.095 lent =	-1.00 3.95 8.57 30.54
40.		0 716 0 640	0 (11 0 (1	0 0 710	0 640	0 663	0 666	5 05
	1,1,1-trichl dibromofluor 1,2-dichloro							
46)	I 1,4-diflu	orobenzene			ISTD			
47) 48) 49) 50) 51) 52) 53) 54)	n-butyl alco cyclohexane 1,1-dichloro isopropyl ac carbon tetra tert-amyl me heptane 1,2-dichloro benzene	0.021 0.347 0.549 0.465 0.132 0.452 1.071 1.023 0.343 0.367 0.392 1.280 0.963 Linear reg	0.022 0.02 0.393 0.37 0.488 0.48 0.161 0.12 0.467 0.46 1.050 0.91 0.415 0.38 0.374 0.38 0.879 0.82	2 0.023 8 0.406 9 0.517 0 0.128 4 0.508 4 0.938 5 0.394 2 0.402 9 0.865	0.019 0.347 0.452 0.104 0.440 0.781 0.347 0.343 0.730 fficier	0.023 0.400 0.509 0.135 0.484 0.948 0.391 0.394	0.022 0.378 0.495 0.130 0.469 0.961 0.379 0.379	6.21 6.87 6.60 14.29 5.19 10.34 7.47 5.30
	Res	ponse Ratio	= 0.00918	+ 0.831	29 *A			
57) 58) 59) 60) 61) 62) 63) 64) 65) 66) 67) 68) 70) 71) 72)	trichloroeth	0.382 0.388 0.379 0.471 0.385 0.450 0.226 0.702 0.669 0.282 0.825 0.014 0.129 0.123 0.083 0.514 0.679 0.585 0.374 0.421 0.451	0.384 0.40 0.497 0.46 0.361 0.34 0.464 0.45 0.220 0.20 0.645 0.65 0.275 0.29 0.857 0.93 0.018 0.03 0.128 0.13 0.128 0.13 0.520 0.55 0.579 0.55 0.419 0.41 0.439 0.41 0.270 0.26 0.265 0.265	00 0.434 68 0.470 63 0.364 68 0.500 64 0.229 67 0.702 62 0.319 62 0.015 68 0.182 66 0.634 67 0.509 68 0.486 69 0.509 68 0.281 69 0.245	0.378 0.418 0.318 0.396 0.183 0.612 0.272 0.834 0.154 0.113 0.066 0.533 0.553 0.442 0.397 0.238 0.190	0.472 0.373 0.453 0.228 0.676 0.300 0.888 0.013 0.159 0.141 0.071 0.554 0.618 0.458 0.458 0.450 0.274 0.245	0.215 0.666 0.290 0.887 0.015 0.158 0.131 0.075 0.548 0.606 0.440	9.64 12.90 7.36 8.47 4.83 6.14 7.34 14.94 11.08 9.41 8.26 6.18 6.88 9.54 6.44 5.99
76) 77) 78) 79) 80)	I chlorober 1,3-dichloro butyl acetat tetrachloroe dibromochlor 1,2-dibromoe chlorobenzen 1,1,1,2-tetr	0.614 0.631 0.303 0.759 0.629 0.580 0.437 0.438 0.976 0.900	0.585 0.6 0.307 0.3 0.605 0.6 0.544 0.6 0.416 0.5 0.821 0.9	58 0.729 26 0.344 47 0.685 17 0.687 03 0.565 50 1.014	0.645 0.289 0.604 0.621 0.502 0.928	0.675 0.329 0.679 0.630 0.494 0.957	0.650 0.316 0.658 0.613 0.479 0.935 0.504	7.18 6.37 8.32 7.87 10.81 6.64 6.37

Initial Calibration Summary Page 3 of 3 Sample: VG5266-ICC5266 Job Number: J85904 Lab FileID: G108665.D **EHTXF Entact Houston** Account: Project: Chevron, Perth Amboy 83) ethylbenzene 1.590 1.259 1.220 1.324 1.373 1.228 1.388 1.340 9.62 84) m,p-xylene 0.607 0.560 0.527 0.557 0.578 0.518 0.603 0.564 6.07 85) o-xylene 0.571 0.548 0.518 0.619 0.572 0.599 0.572 5.75 86) styrene 0.775 0.733 0.891 0.955 0.880 0.879 0.852 9.62 87) bromoform 0.373 0.359 0.436 0.486 0.424 0.423 0.417 10.96 88) cyclohexanon 0.082 0.075 0.070 0.071 0.055 0.084 0.073 14.38 89) I 1,4-dichlorobenzene-d ------ISTD------ISTD------Response Ratio = $0.01184 + 0.06310 *A + 0.00319 *A^2$ 113) 1,2,4-trichl 0.848 0.988 0.986 1.062 1.147 1.051 1.079 1.023 9.25 114) hexachlorobu 0.762 0.806 0.790 0.803 0.809 0.756 0.827 0.793 3.27 115) naphthalene 1.326 1.298 1.437 1.604 1.397 1.488 1.425 7.87 116) 1,2,3-trichl 0.785 0.985 0.959 0.903 0.974 0.882 0.924 0.916 7.54 117) Ethylenimine 0.000# -1.00 0.000# -1.00 118) Bis(chlorome (#) = Out of Range ### Number of calibration levels exceeded format ###

MG5266.M Wed Mar 26 14:42:13 2008 RPT1

VG5266-ICV5266

Sample:

Lab FileID: G108671.D

Job Number: J85904

Account: **EHTXF Entact Houston**

Project: Chevron, Perth Amboy

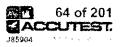
Evaluate Continuing Calibration Report

Data File : C:\msdchem\1\DATA\VG5267\g108671.d Vial: 12 Acq On : 25 Mar 2008 6:55 pm Operator: SCOTTM Sample : ICV5266-50 Misc : MS62268, VG5266,,,,,1 Inst : MSG Multiplr: 1.00

MS Integration Params: lscint.p

Method : C:\msdchem\1\METHODS\mg5266.m (RTE Integrator)
Title : SW-846 Method 8260B
Last Update : Wed Mar 26 17:10:43 2008 Response via: Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min


Max. RRF Dev: 20% Max. Rel. Area: 200%

	Compound	AvgRF	CCRF	%Dev Area% Dev(min)R.T.	
1 I	Tert Butyl Alcohol-d9 tertiary butyl alcohol	1.000	1.000	0.0 106 -0.02 5.83	
2 M	tertiary butyl alcohol	1.068	1.044	2.2 109 0.00 5.99	
		Truo	Calc	% Drift	
3 M	acetonitrile			15.0 96 0.00 9.30	
4 M	1,4-dioxane			2.8 111 0.00 13.16	5
1 44	1, 1 dienane				
		AvgRF	CCRF	% Dev	
5 I	pentafluorobenzene	1.000	1.000	0.0 100 +0.02 9.59	
6 M	chlorodifluoromethane	0.475	0.467	1.7 107 0.05 3.13	
7 M	dichlorodifluoromethane	0.591	0.563	4.7 93 -0.02 3.15	
8 M	chloromethane	0.408	0,412	-1.0 102 -0.02 3.46	
9 M	vinyl chloride	0.342	0.346	-1.2 100 -0.02 3.67	
10 M	bromomethane	0.360	0.364	-1.1 102 0.00 4.32	
11 M	chloroethane	0.259	0.267	-3.1 102 0.00 4.43	
12 M	trichlorofluoromethane	0.649	0.632	2.6 95 0.00 4.86	
13 M	ethyl ether	0.170	0.185	-8.8 105 0.00 5.29	
14 M	acrolein	0.035	0.038	-8.6 109 0.00 5.50	
15 M	freon 113	0.630	0.640	-1.6 98 0.00 5.59	
16 M	acetone	0.030	0.039	-30.0# 131 0.00 5.61	
17 M	1,1-dichloroethene	0.326	0.335	-2.8 102 0.00 5.83	
18 M	iodomethane	0.748	0.768	-2.7 102 0.00 6.37	
19 M	methyl acetate	0.197	0.224	-13.7 109 0.00 6.41	
20 M	allyl chloride	0.488	0.522	-7.0 104 0.00 6.47	
21 M	methylene chloride	0.338	0.355	-5.0 106 +0.02 6 <i>.</i> 67	
22 M	carbon disulfide	0.877	0.896	-2.2 102 0.00 6.72	
23 M	acrylonitrile	0.057	0.064	-12.3 107 0.00 6.90	
24 M	methyl tert butyl ether	0.941	0.970	+3.1 105 0.00 6.97	
25 M	trans-1,2-dichloroethene	0.376	0.402	-6.9 105 0.00 7.22	
26 M	hexane		0.460	2.7 98 0.00 7.34	
27 M	di-isopropyl ether	1.685	1.643	2.5 102 0.00 7.81	
28 M	1,1-dichloroethane	0.745	0.764	-2.6 105 -0.02 7.98	
	****	True	Calc.	% Drift	
29 M	vinyl acetate	50.000	51.423	-2.8 108 0.00 8.00	
		AvaRF	CCRF	% Dev	
30 M	chloroprene	0.546	0.538	1.5 100 0.00 8.17 +1 2 103 0.00 8.57	
31 M	ethyl tert-butyl ether		1.406	-1.2 103 0.00 8.57	
32 M	2-butanone	0.133	0.148	-11.3 125 0.00 8.76	

Page 2 of 3

Initial Calibration Verification

Job Num	ber: J85904 EHTXF Entact Houston Chevron, Perth Amboy			Sample: Lab FileID:		5266-ICV526 086 71 .D	6
		True	Calc.	% Drift			
33 M	propionitrile	500.000	477.454	4.5	111	0.00	8.90
		AvgRF	CCRF	% Dev			_
34 M	2,2-dichloropropane	0.664	0.648	2.4	102	0.00	9.07
35 M	2,2-dichloropropane ethyl acetate cis-1,2-dichloroethene	0.687	0.716	-4.2	105	-0.02	9.12
36 M							
37 M	methacrylonitrile	True	Calc.	% Drift	100	0.00	0. 2.0
37 m				4.1			
38 M	methyl acrylate	AvgRF	CCRF	% Dev	111	0.00	- n 22
39 M	iso-butyl alcohol	0.2.00	0.204	-6.8 NA		0.00	9.33
40 M	chloroform	0 804	0.810	-0.7	104	0.00	0.42
41 M	bromochloromethane	0.226	0.243	-7.5	107	0.00	9.43
		True	Calc.	% Drift			
42 M	tetrahydrofuran	50.000	48.099	3.8	110	-0 02	9-82
						0.02	J. U.Z
		AvgRF	CCRF	% Dev			
43 M	1,1,1-trichloroethane	0.666	0.657	1.4	101	0.00	10.23
44 S	<pre>dibromofluoromethane (s) 1,2-dichloroethane-d4 (s)</pre>	0.673	0.619	8.0	105	-0.02	9.85
45 S	1,2-dichloroethane-d4 (s)	0.460	0.403	12.4	101	0.00	10.82
46 I	1,4-difluorobenzene	1.000	1.000	0.0	101		11.59
47 M	n-butyl alcohol	0.022 0.378	0.022	0.0	103		10.25
48 M	Cycronexane	0.378	0.393		105		10.27
49 M	1,1-dichloropropene	0.495	0.500				10.52
50 M	isopropyl acetate carbon tetrachloride	0.130	0.133		112	0.00	10.67
51 M	carbon tetrachloride tert-amyl methyl ether	0.469	0.461	1.7	100	0.00	10.72
52 M	tert-amy1 metny1 etner	0.961	0.958	0.3	105	-0.02	10.76
53 M 54 M	heptane 1,2-dichloroethane	0.379	0.3/3	1.6	9/	0.00	10.85
og m				-4.2		0.00	11.00
55 M	benzene						11 04
OO M		50.000		-1.1		-0.02	11.04
5.C. W							
56 M	trichloroethene	0.396	0.409	-3.3	103		12.27
57 M	methylcyclohexane	0.450	0.458	-1.8	98		12.41
58 M 59 M	1,2-dichloropropane propyl acetate	0.374	0.359	4.0	105		12.62
59 M 60 M	• • •	0.453	0.475	-4.9	104		12.71
60 M	methyl methacrylate	0.215	0.209	2.8	103		12.75
62 M	bromodichloromethane dibromomethane	0.666	0.671	-0.8	103		13.10
63 M	2-nitropropane	0.290	0.305	-5.2	105		13.21
64 M	3-methyl-1-butanol	0.887	0.947	-6.8	104		13.75
65 M	2-chloroethyl vinyl ether	0.015 0.158	0.014 0.172	6.7	110		13.33
66 M	4-methyl-2-pentanone	0.131	0.144	-8.9 -9.9	103 106		13.74
67 M	epichlorohydrin	0.075	0.075	0.0	106		13.82
68 M	cis-1,3-dichloropropene	0.548	0.578	-5.5	105		13.76 14.24
69 M	toluene	0.606	0.617	-1.8	103		14.24
70 M	trans-1,3-dichloropropene		0.486	-10.5	104		14.93 15.29
71 M	ethyl methacrylate	0.444	0.456	-2.7	1.05		15.29
72 M	1,1,2-trichloroethane	0.265	0.277	-4.5	106		15.61
73 M	2-hexanone	0.242	0.254	-5.0	115		15.64
74 S	toluene-d8 (s)	0.977	0.959	1.8	108		14.76
75 I	chlorobenzene-d5	1.000	1.000	0.0	102	-0.02	17.78

Initial Calibration Verification Page 3 of 3 Job Number: J85904 VG5266-1CV5266 Sample:

Account: Project:	EHTXF Entact Houston Chevron, Perth Amboy			Sample: Lab FileID:		5266-1CV5 08671.D	266
76 M	1,3-dichloropropane	0.650	0.701	-7.8	107	-0.02	16.10
77 M	butyl acetate	0.316	0.333		105	0.00	16.13
78 M	tetrachloroethene	0.658	0.652	0.9	103	0.00	16.26
79 M	dibromochloromethane	0.613	0.638	-4.1	106	0.00	16.65
80 M	1,2-dibromoethane	0.479	0.526		107	0.00	17.04
81 M	chlorobenzene	0.935	0.987	-5.6	106	-0.02	17.87
82 M	1,1,1,2-tetrachloroethane	0.504	0.525	-4.2	103	-0.02	17.94
83 M	ethylbenzene	1.340	1.378	-2.8	106	0.00	17.97
84 M	m,p-xylene	0.564	0.571	-1.2	105	-0.02	18.12
85 M	o-xylene	0.572	0.599	-4.7	105	0.00	18.95
86 M	styrene	0.852	0.913	-7.2	105	-0.02	19.00
87 M	bromoform	0.417	0.442	-6.0	103	0.00	19.64
88 M	cyclohexanone	0.073	0.084	-15.1	123	0.00	19.71
89 I	1,4-dichlorobenzene-d4	1.000	1.000	0.0	98	0.00	22.23
90 S	4-bromofluorobenzene (s)	1.286	1.144	11.0	101	-0.02	20.08
91 M	isopropylbenzene	2.518	2.513	0.2	104	0.00	19.62
92 M	1,1,2,2-tetrachloroethane	1.043	1.084	-3.9	107	-0.02	19.92
93 M	1,2,3-trichloropropane	0.291	0.314	-7.9	108	-0.02	20.19
94 M	trans-1,4-dichloro-2-bute	0.191	0.212	-11.0	107	-0.02	20.32
95 M	n-propylbenzene	3.215	3.152	2.0	103	0.00	20.36
96 M	bromobenzene	0.817	0.837	-2.4	103	0.00	20.43
97 M	1,3,5-trimethylbenzene	2.283	2.211	3.2	103	-0.02	20.65
98 M	2-chlorotoluene	1.692	1.889	-11.6	115	-0.08	20.68
99 M	4-chlorotoluene	2.366	2.286	3.4	94	0.00	20.76
100 M	tert-butylbenzene	1.711	1.705	0.4	101	0.00	21.30
101 M	1,2,4-trimethylbenzene	2.264	2.186	3.4	102	0.00	21.37
102 M	pentachloroethane	0.666	0.667	-0.2	100	0.00	21.42
103 M	sec-butylbenzene	3.109	3.049	1.9	102	-0.02	21.68
104 M	p-isopropyltoluene	2.669	2.597	2.7	101	0.00	21.93
105 M	1,3-dichlorobenzene	1.361	1.375	-1.0	103	0.00	22.10
106 M	1,4-dichlorobenzene	1.470	1.448	1.5	103	0.00	22.29
107 M	benzyl chloride	1.025	1.092	-6.5	103	0.00	22.49
108 M	n-butylbenzene	2.363	2.533	-7.2	100	0.00	22.66
109 M	1,2-dichlorobenzene	1.341	1.356	-1.1	101	0.02	22.96
110 M	hexachloroethane	0.684	0.704	-2.9	99	0.02	23.60
111 M	1,2-dibromo-3-chloropropa	0.227	0.251	-10.6	102	0.02	24.33
		TIUC	Calc.	% Drift			
112 M	nitrobenzene	50.000	53.243	-6.5	117	0.00	24.33
			CCRF				
113 M	1,2,4-trichlorobenzene	1.023	1.092	-6.7	101	0.02	25.72
114 M	hexachlorobutadiene	0.793	0.790	0.4	96	0.00	25.92
115 M	naphthalene		1.523	-6.9	104	0.02	26.09
116 M	1,2,3-trichlorobenzene	0.916		-1.5	101	0.00	26.42
117 M	Ethylenimine			NA			
118 M	Bis(chloromethyl)ether			NA		_	

(*) = Out of Range SPCC's out = 0 CCC's out = 0 G108665.D mg5266.m Mon Apr 07 15:51:37 2008 NJVMVOA05

Account: **EHTXF Entact Houston**

Project: Chevron, Perth Amboy

VG5270-CC5266 Sample: Lab FileID: G108723.D

Evaluate Continuing Calibration Report

Data File : C:\msdchem\1\DATA\vg5270\gl08723.d Vial: 47 : 27 Mar 2008 9:46 am Acq On Operator: SCOTTM : CC5266-50 : MS62480, VG5270,,,,1 Sample Inst : MSG Misc Multiplr: 1.00

MS Integration Params: 1scint.p

: C:\msdchem\1\METHODS\mg5266.m (RTE Integrator)

Last Update : Wed Mar 26 17:10:43 2008 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 20% Max. Rel. Area : 200%

		Compound	AvgRF	CCRF	%Dev Area% Dev(min)R.T.	•
					0.0 85 -0.03 5.82	
					-14.6 103 0.00 5.99	
	M	acetonitrile	500.000	496.929	0.6 91 -0.03 9.2	7
4	М	1,4-dioxane	1250.000	1402.425	-12.2 104 -0.01 13	.15
			AvaRF	CCRF	% Dev	
5	I	pentafluorobenzene		1.000	0.0 110 -0.04 9.53	7
6	М	chlorodifluoromethane	0.475	0.583	-22.7# 147 0.04 3.12	>
7	M	dichlorodifluoromethane		0.765	-29.4# 139 -0.04 3.14	
8	M			0.403	1.2 109 -0.03 3.44	1
9	M	chloromethane vinyl chloride	0.342	0.389	-13.7 124 -0.03 3.66	5
10	М	bromomethane	0.360	0.397		_
11	М	chloroethane	0.259	0.292	-10.3 122 -0.02 4.30 -12.7 123 -0.01 4.42 -33.6# 143 -0.02 4.84	2
12	M	trichlorofluoromethane	0.649	0.867	-12.7 123 -0.01 4.42 -33.6# 143 -0.02 4.84	1
13	M		0.170	0.182	-7.1 113 0.00 5.29	9
14	M	acrolein	0.035			
15	M	freon 113	0.630	0.836	34.3# 74 0.00 5.50 -32.7# 140 -0.03 5.56	
16	M	acetone	0.030	0.032	-6.7 118 -0.02 5.59	
17	M	1,1-dichloroethene		0.386		
18	M	iodomethane	0.748	୦ ୫୧୨	~12 2 123 ~n n1 6 3 ⁵	7
19	M	methy1 acetate	0.197	0.181	8.1 97 -0.02 6.40)
20		allyl chloride	0.488	0.541	-10.9 118 -0.01 6.46	
21	M	methylene chloride	0.338	0.370	-9.5 121 -0.02 6.67	
22	M	methylene chloride carbon disulfide	0.877	0.963	-9.5 121 -0.02 6.67 -9.8 120 -0.01 6.71	Ļ.
23	M	acrylonitrile	0.057		7.0 97 0.00 6.89	
24	M	methyl tert butyl ether trans-1,2-dichloroethene	0,941	0.919	2.3 109 0.00 6.98	}
25	M	trans-1,2-dichloroethene	0.376	0.455	-21.0# 130 -0.01 7.21	-
26	M	hexane	0.473		-20.9# 134 -0.02 7.32	2
27	M	di-isopropyl ether	1.685	1.661	1.4 114 -0.01 7.79)
28	M	1,1-dichloroethane	0.745	0.803	-7.8 121 -0.02 7.97	7
			True	Calc.	% Drift	
29	M		50.000		-2.9 119 -0.02 7.97	,
			∦4+~ti\ti	C C D F2	3 Dow	
30	м	chloropropo	AVGKE	CCRF	% Dev	7
31	M. M.	chloroprene ethyl tert-butyl ether	0.346	∪. b⊥b 1 /112	-13.2 125 -0.01 8.17 -1.6 114 -0.01 8.56 11.3 109 0.00 8.77	-
32	M M	2-butanone	1.390	1.41Z	71.0 114 ~0.01 8.50	,
32	TAI	z-bucanone	0.133	0.118	11.3 109 0.00 8.//	

Page 2 of 3

Continuing Calibration Summary Job Number: J85904

Continuing Calibration Summar Job Number: J85904 Account: EHTXF Entact Houston Project: Chevron, Perth Amboy		у		Sample: Lab FileID:		Page 2 of 3	
		True	Calc.	% Drift	AR-144- AR-14		
33 M	propionitrile	500.000	386.882	22.6#	97 -0.02	8.89	
		AvgRF	CCRF	% Dev			
34 M	2,2-dichloropropane						
35 M	ethyl acetate	0.687	0.765	-11.4	123 -0.03	9.11	
36 M	ethyl acetate cis-1,2-dichloroethene	0.412	0.485	-17.7	128 -0.02	9.12	
27.14							
37 M	methacrylonitrile			24.8#	91 -0.02	9.29	
	AL THE SAL AR	AvgRF	CCRF	% Dev			
38 M	methyl acrylate	0.266	0.244	8.3	104 -0.01	9.31	
39 M	<pre>methyl acrylate iso-butyl alcohol chloroform</pre>	0.000	0.013	0.0	0# -0.02	9.34	
40 M	chloroform	0.804	0.894	-11.2	125 -0.03	9.41	
41 M	bromochloromethane	0.226	0.250	-10.6	121 -0.02	9.73	
40.14	and the sale the sale tage the sale the special special the sale the sale special tage.						
42 M		50.000		24.1#	97 -C.04	9.81	
		AvgRF	CCRF				
43 M	1,1,1-trichloroethane	0.666	0.772	-15.9	131 -0.02	10.20	
44 S	dibromofluoromethane (s)	0.673	0.606	10.0	113 -0.03	9.84	
45 S	<pre>dibromofluoromethane (s) 1,2-dichloroethane-d4 (s)</pre>	0.460	0.376	18.3	104 -0.02	10.81	
46 I	1,4-difluorobenzene	1.000		0.0	112 -0.01	11.58	
47 M	n-butyl alcohol	0.022	0.025	-13.6 -26.7#	130 -0.02	10.23	
48 M	cyclonexane	0.378	0.479	-26.7#	141 -0.03	10.25	
49 M	1,1-dichloropropene	0.495		-14.5		10.50	
50 M	isopropyl acetate	0.130	0.111	14.6 -19.4	104 0.00	10.65	
51 M	carbon tetrachloride	0.469	0.560	-19.4	135 -0.02	10.71	
52 M	tert-amyl methyl ether	0.961	0.938	2.4	115 -0.03	10.75	
53 M	heptane	0.379	0.447	-17.9	130 0.00	10.85	
54 M	1,2-dichloroethane	0.379	0.393	-3.7	115 -0.03	10.98	
	also also and regar also also also regar also regar also also also also regar also also also regar also						
55 M	benzene	50.000	56.436	-12.9	128 -0.02	11.03	
56							
56 M	trichloroethene	0.396	0.453	-14.4	126 0.00	12.26	
57 M	methylcyclohexane	0.450	0.566	-25.8#		12.39	
58 M	1,2-dichloropropane	0.374	0.370	1.1	120 -0.01	12.61	
59 M	propyl acetate	0.453	0.394	13.0	96 -0.02	12.69	
60 M	methyl methacrylate	0.215	0.195	9.3	107 -0.02	12.74	
61 M	bromodichloromethane	0.666	0.706	-6.0	120 -0.03	13.09	
62 M	dibromomethane	0.290	0.300	-3.4	115 -0.03	13.19	
63 M	2-nitropropane	0.887	0.872	1.7	106 -0.03	13.73	
64 M	3-methyl-1-butanol	0.015	0.010	33.3#		13.31	
65 M	2-chloroethyl vinyl ether		0.169	-7.0	112 -0.03	13.72	
66 M	4-methyl-2-pentanone	0.131	0.123	6.1	101 -0.02	13.80	
67 M	epichlorohydrin	0.075	0.067	10.7	106 -0.03	13.73	
68 M	cis-1,3-dichloropropene	0.548	0.609	-11.1	122 -0.02	14.23	
69 M	toluene	0.606	0.692	-14.2	130 -0.02	14.91	
70 M	trans-1,3-dichloropropene		0.482	-9.5	117 -0.02	15.27	
71 M	ethyl methacrylate	0.444	0.406	8.6		15.27	
72 M	1,1,2-trichloroethane	0.265	0.269	-1.5		15.59	
73 M	2-hexanone	0.242	0,221	8.7		15.62	
74 S	toluene-d8 (s)	0.977	0.952	2.6	119 -0.03	14.74	
75 I	chlorobenzene-d5	1.000	1.000	0.0	110 -0.03	17.78	

ob Numi Account: Project:	uing Calibration Summary Der: J85904 EHTXF Entact Houston Chevron, Perth Amboy	,		Sample: Lab FileID:		5270-CC52)8723.D	Page 3 66
76 M	1,3-dichloropropane	0.650	0.700	-7.7	115	-0.02	16.11
77 M	butyl acetate	0.316	0.293	7.3	99	-0.01	16.13
78 M	tetrachloroethene	0.658	0.753	-14.4	128	-0.02	16.24
79 M	dibromochloromethane	0.613	0.646	-5.4	115	-0.03	16.63
80 M	1,2-dibromoethane	0.479	0.506	-5.6	111	-0.02	17.03
81 M	chlorobenzene	0.935	1.096	-17.2	127	-0.03	17.85
82 M	1,1,1,2-tetrachloroethane	0.504	0.571	-13.3	121	-0.03	17.94
83 M	ethylbenzene	1.340	1.527	-14.0	127	-0.02	17.96
84 M	m,p-xylene	0.564	0.652	-15.6	129	-0.03	18.11
85 M	o-xylene	0.572	0.672	-17.5	127	-0.01	18.94
86 M	styrene	0.852	0.997	-17.0	123	-0.01	19.01
87 M	bromoform	0.417	0.405	2.9	102	-0.02	19.63
88 M	cyclohexanone	0.073	0.067	8.2	105	-0.02	19.70
89 I	1,4-dichlorobenzene-d4	1.000	1.000	0.0	107	-0.02	22.21
90 S	4-bromofluorobenzene (s)	1.286	1.129	12.2	109	-0.04	20.06
91 M	isopropylbenzene	2.518	2.831	-12.4	127	-0.02	19.61
92 M	1,1,2,2-tetrachloroethane	1.043	0.999	4.2	108	-0.02	19.93
93 M	1,2,3-trichloropropane	0.291	0.287	1.4	107	-0.02	20.19
94 M	trans-1,4-dichloro-2-bute	0.191	0.192	-0.5	106	-0.03	20.31
95 M	n-propylbenzene	3.215	3.571	-11.1	128	-0.01	20.35
96 M	bromobenzene	0.817	0.908	-11.1	122	-0.01	20.43
97 M	1,3,5-trimethylbenzene	2.283	2.432	-6.5	124	-0.03	20.64
98 M	2-chlorotoluene	1.692	1.844	-9.0	122	-0.09	20.68
99 M	4-chlorotoluene	2.366	2.753	-16.4	123	-0.02	20.75
.00 M	tert-butylbenzene	1.711	1.912	-11.7	123	-0.02	21.29
.01 M	1,2,4-trimethy1benzene	2,264	2.373	-4.8	121	-0.01	21.35
.02 M	pentachloroethane	0.666	0.714	-7.2	117	-0.02	21.40
.03 M	sec-butylbenzene	3.109	3.485	-12.1	127	-0.03	21.67
.04 M	p-isopropyltoluene	2.669	2.895	-8.5	124	-0.02	21.91
.05 M	1,3-dichlorobenzene	1.361	1.480	-8.7	121	-0.02	22.08
.06 M	1,4-dichlorobenzene	1.470	1.561	-6.2	121	-0.02	22.26
.07 M	benzyl chloride	1.025	1.066	-4.0	110	-0.03	22.47
08 M	n-butylbenzene	2.363	2.895	-22.5#		-0.02	22.64
09 M	1,2-dichlorobenzene	1.341	1.427	-6.4	117	-0.01	22.93
10 M	hexachloroethane	0.684	0.783	-14.5	120	-0.02	23.56
11 M	1,2-dibromo-3-chloropropa	0.227	0.190	16.3	85	0.00	24.31
12 M				% Drift			
12 14	nitrobenzene	50.000		-6.4			
12 M	1 2 4 + oh 1	- AvgRF	CCRF	% Dev			
13 M	1,2,4-trichlorobenzene	1.023	1.1/5	-14.9	118	-0.01	25.69
14 M	hexachlorobutadiene	0.793	0.884	-11.5	118	-0.02	25.89
15 M	naphthalene	1.425	1.394	2.2 -3.7	104	-0.01	26.06
	1,2,3-trichlorobenzene	0.916	0.950	-3.7	112	-0.01	26.40
	Ethylenimine			NA		-	
та М	Bis(chloromethyl)ether			NA		-	

^{(#) =} Out of Range SPCC's out = 0 CCC's out = 0 G108665.D mg5266.m Tue Apr 01 14:17:50 2008 NJVMVOA05



GC/MS Vo	latiles ————	 	
Raw Data			

Ò

Quantitation Report (QT Reviewed)

Data File : C:\MSDCHEM\1\DATA\1C\V1C2073\1C49733.D Vial: 17
Acq On : 27 Mar 2008 5:34 pm Operator: MaoH
Sample : j85904-1 Inst : MS1C
Misc : MS62223,V1C2073,10,,100,10,1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Mar 27 17:58:19 2008 Quant Results File: M1C2051.RES

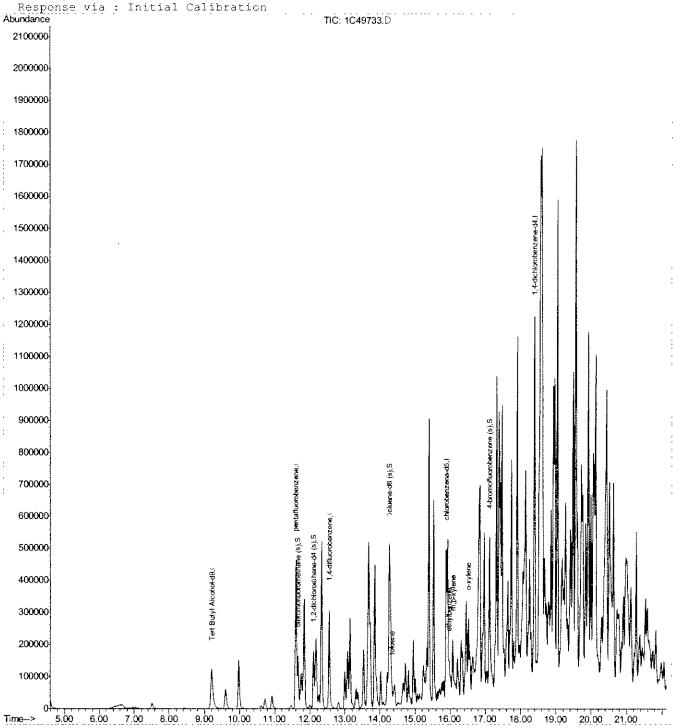
Quant Method: C:\MSDCHEM\l\METHODS\M1C2051.M (RTE Integrator)

Title : SW-846 Method 8260B Last Update : Thu Mar 13 17:13:49 2008 Response via : Initial Calibration

DataAcq Meth : M1C2051

Internal Standards	R.T.	QIon	Response	Conc U	nits Dev	(Min)
1) Tert Butyl Alcohol-d9 4) pentafluorobenzene 46) 1,4-difluorobenzene 74) chlorobenzene-d5 88) 1,4-dichlorobenzene-d4		168 114 117	108251 223432 298247 286854 190145	50.00 50.00	ug/L ug/L ug/I, ug/L	0.00
System Monitoring Compounds 40) dibromofluoromethane (s) Spiked Amount 50.000 Ra 41) 1,2-dichloroethane-d4 (s) Spiked Amount 50.000 Ra 66) toluene-d8 (s) Spiked Amount 50.000 Ra 90) 4-bromofluorobenzene (s) Spiked Amount 50.000 Ra	ange 68 12.10 ange 59 14.27 ange 75	- 123 65 - 136 98 - 123 95	Recove 160017 Recove 377898 Recove 160964	ry = 45.34 ry = 46.80 ry = 47.74	92.669 ug/L 90.689 ug/L 93.609 ug/L	0.00
Target Compounds 68) toluene 83) ethylbenzene 84) m,p-xylene 85) o-xylene	14.34 15.97 16.07 16.52	91 106	3713 7858 46283 70838	0.76 11.41	Quug/L # ug/L ug/L ug/L	82 95

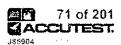
^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed 1C49733.D M1C2051.M Mon Mar 31 16:18:07 2008 NJVOA03

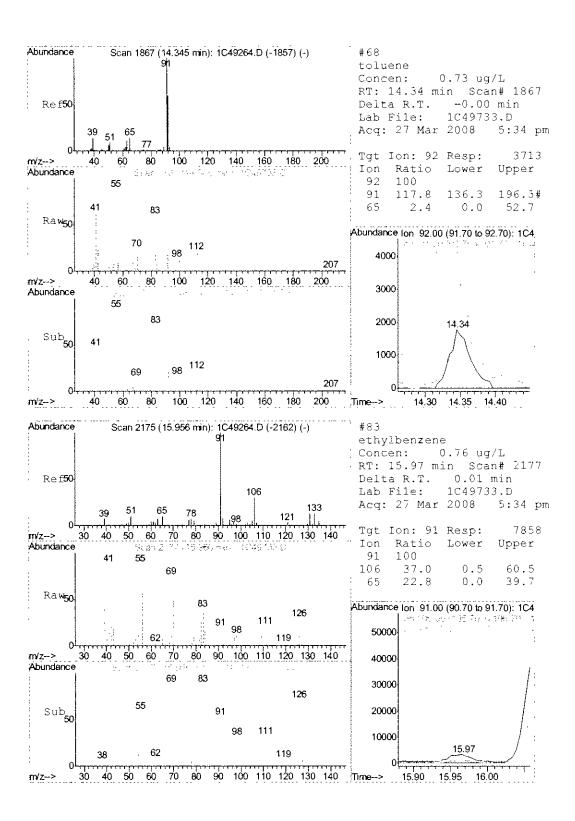

Quantitation Report (QT Reviewed)

MS Integration Params: RTEINT.P

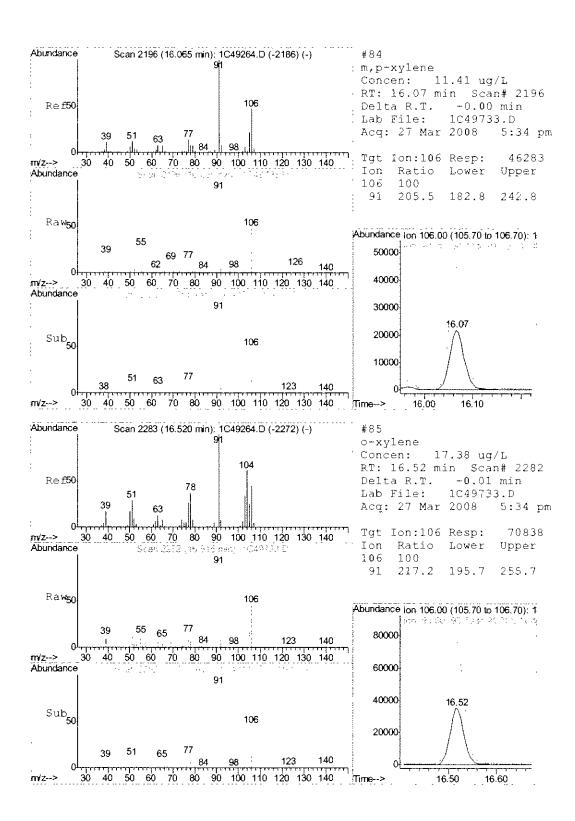
Quant Time: Mar 31 16:13 2008 Quant Results File: M1C2051.RES

Method : C:\MSDCHEM\1\METHODS\M1C2051.M (RTE Integrator)


Title : SW-846 Method 8260B Last Update : Thu Mar 13 17:13:49 2008



1C49733.D M1C2051.M


Mon Mar 31 16:18:09 2008

NJVOA03

Page 3

1C49733.D M1C2051.M

Mon Mar 31 16:18:11 2008 NJVOA03

Quantitation Report (QT Reviewed)

Data Path : C:\msdchem\1\DATA\

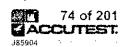
Data File : g108730.d

Acq On : 27 Mar 2008 2:20 pm

Operator : SCOTTM

Sample : J85904-1,VTCL

Misc : MS62223,VG5270,0.58,,,,1 ALS Vial : 13 Sample Multiplier: 1


Quant Time: Apr 02 09:08:58 2008

Quant Method : C:\HPCHEM\1\METHODS\MG5266.M

Quant Title : SW-846 Method 8260B QLast Update : Thu Mar 27 13:19:31 2008 Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc U	nits	Dev(Min)
1) Tert Butyl Alcohol-d9	5.851	65	128265	500.00	PPb	0.00
5) pentafluorobenzene	9.578	168	400374	50.00	PPb	-0.03
46) 1,4-difluorobenzene	11.593	114	517133	50.00	PPb	0.00
75) chlorobenzene-d5	17.790	117	357965	50.00	PPb	-0.02
89) 1,4-dichlorobenzene-d4	22.242	152	169961	50.00	PPb	0.00
System Monitoring Compounds						
44) dibromofluoromethane (s)	9.847	113	224919	41.76	PPb	-0.02
Spiked Amount 50,000 Ran	ige 70	- 120	Recove	ry =	83.	.52%
45) 1,2-dichloroethane-d4 (s)	10.809	65	157083	42.63	PPb	-0.02
Spiked Amount 50.000 Ran	-			-		
74) toluene-d8 (s)						
Spiked Amount 50.000 Ran						
90) 4-bromofluorobenzene (s)						
Spiked Amount 50.000 Ran	ige 65	- 142	Recove	ry =	111.	. 38%
Target Compounds						Qvalue
21) methylene chloride	6.660	84	27146	10.03	PPb	# 57
•	14.923					
83) ethylbenzene	17.959	91	96503	10.06	PPb	91
	18.111	106	784576		PPb	
85) o-xylene	18.945	106	986981	240.83	PPb	97

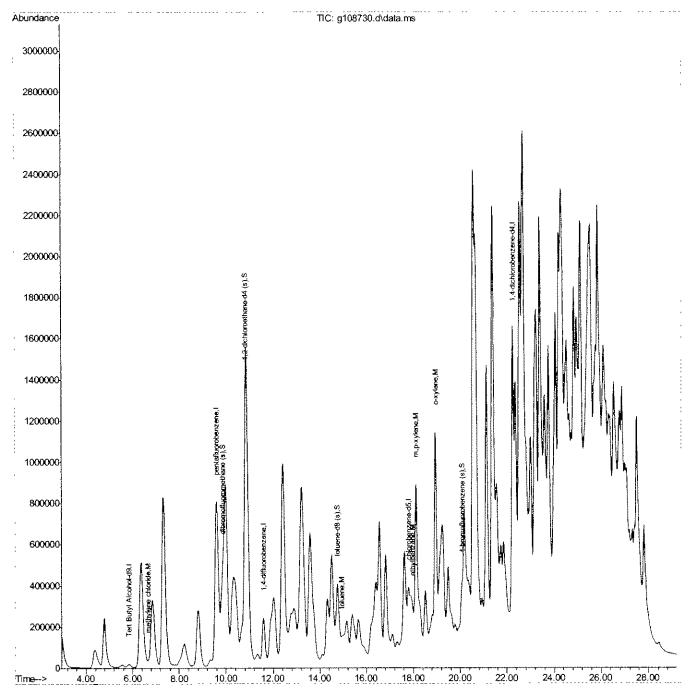
(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data Path : C:\msdchem\1\DATA\

Data File : gl08730.d

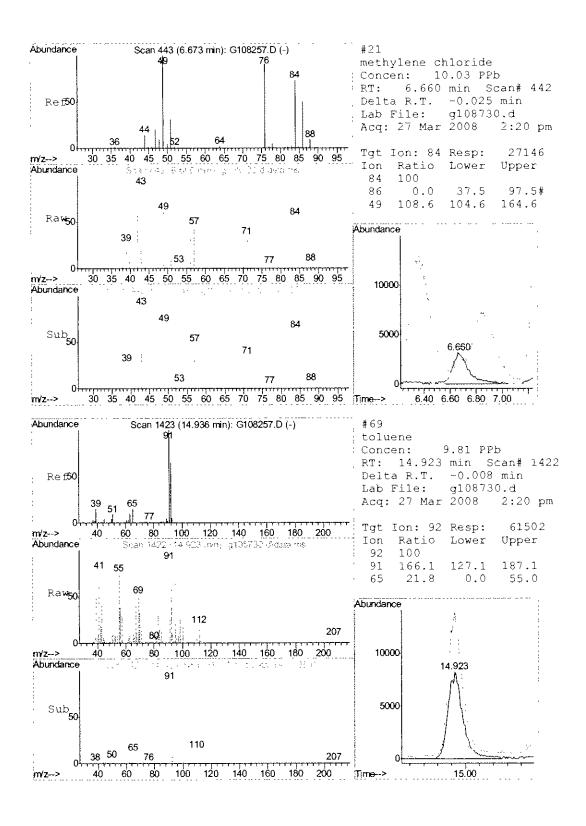
Acq On : 27 Mar 2008 2:20 pm

Operator : SCOTTM

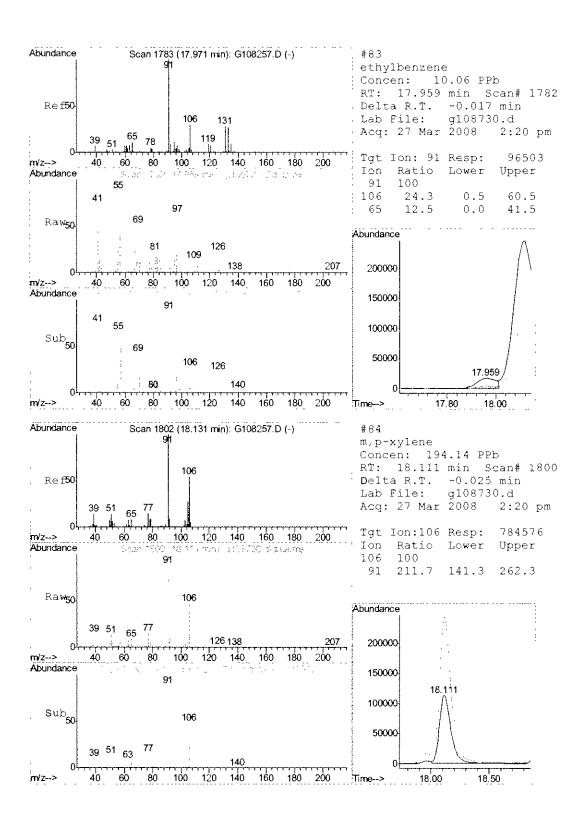

Sample : J85904-1,VTCL

Misc : MS62223,VG5270,0.58,,,,1 ALS Vial : 13 Sample Multiplier: 1

Quant Time: Apr 02 09:08:58 2008


Quant Method: C:\HPCHEM\1\METHODS\MG5266.M

Quant Title : SW-846 Method 8260B QLast Update : Thu Mar 27 13:19:31 2008 Response via : Initial Calibration



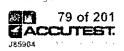
mg5266.m Wed Apr 02 09:09:16 2008 NJVMVOA04

Page: 2


Page 3

g108730.d mg5266.m

Wed Apr 02 09:09:18 2008 NJVMVOA04

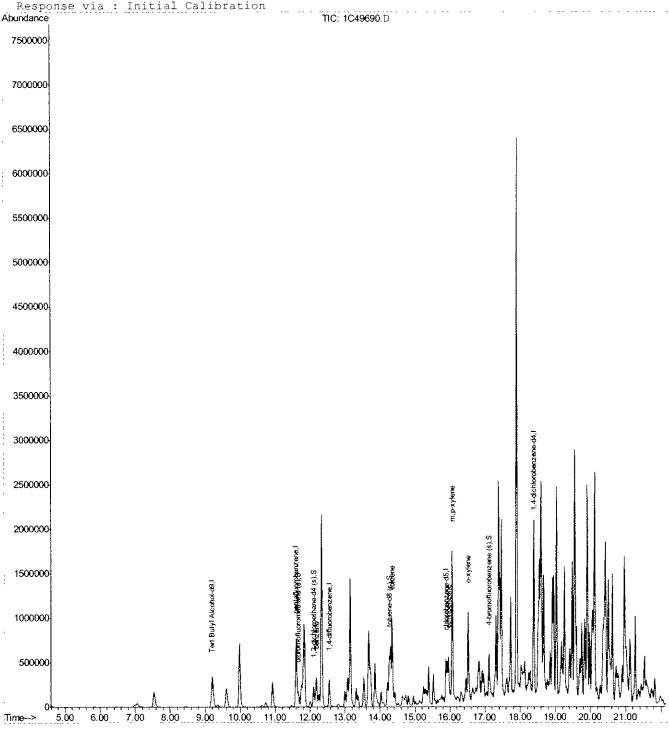

MS Integration Params: RTEINT.P Quant Time: Mar 26 18:56:32 2008 Quant Results File: M1C2051.RES

Quant Method : C:\MSDCHEM\1\METHODS\M1C2051.M (RTE Integrator)

Title : SW-846 Method 8260B Last Update : Thu Mar 13 17:13:49 2008 Response via : Initial Calibration

DataAcq Meth : M1C2051

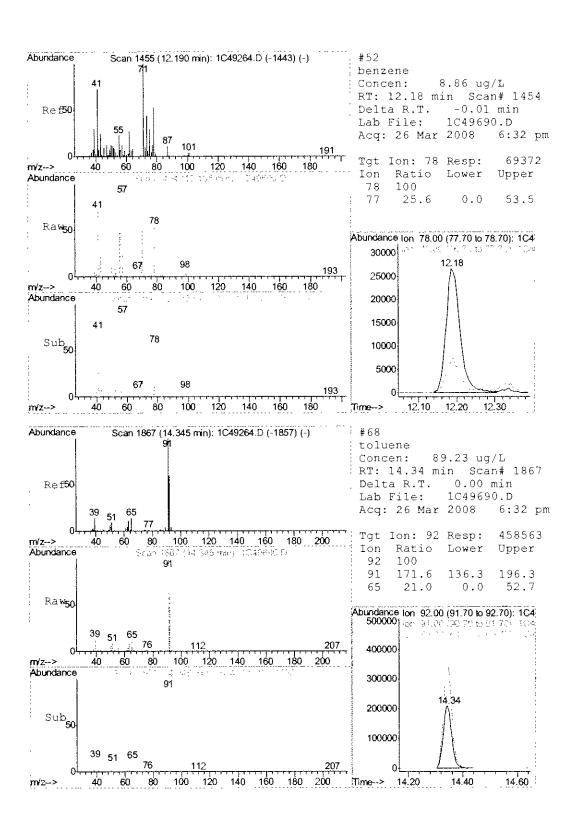
1) Tert Buty1 Alcohol-d9 9.19 65 99452 500.00 ug/L 0	.00
41 50 460 007504 50 00 17	
-, 1	
	.00
	.00
88) 1,4-dichlorobenzene-d4 18.37 152 194220 50.00 ug/L 0	.00
System Monitoring Compounds	
40) dibromofluoromethane (s) 11.66 113 111596 45.77 ug/L 0	.00
Spiked Amount 50.000 Range 68 - 123 Recovery = 91.54%	
41) 1,2-dichloroethane-d4 (s) 12.10 65 160125 44.54 ug/L 0	.00
Spiked Amount 50.000 Range 59 - 136 Recovery = 89.08%	
66) toluene-d8 (s) 14.27 98 389807 47.91 ug/L 0	.00
Spiked Amount 50.000 Range 75 - 123 Recovery = 95.82%	
90) 4-bromofluorobenzene (s) 17.11 95 159161 46.22 ug/L 0	.00
Spiked Amount 50.000 Range 65 - 140 Recovery # 92.44%	
Target Compounds Qval	ue
52) benzene 12.18 78 69372 8.86 ug/L	96
68) toluene 14.34 92 458563 89.23 ug/L	96
83) ethylbenzene 15.96 91 324962 31.22 ug/L	99
84) m,p-xylene 16.06 106 566583 139.41 ug/L	
	100


^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed 1C49690.D M1C2051.M Thu Mar 27 12:08:16 2008 NJVOA03

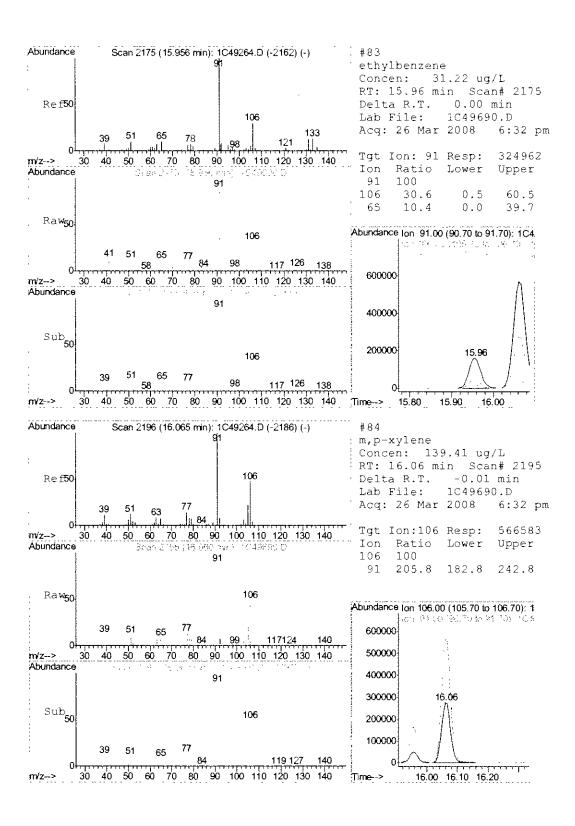
MS Integration Params: RTEINT.P

Quant Time: Mar 27 12:03 2008 Quant Results File: M1C2051.RES

Method : C:\MSDCHEM\1\METHODS\M1C2051.M (RTE Integrator)


Title : SW-846 Method 8260B Last Update : Thu Mar 13 17:13:49 2008

1C49690.D M1C2051.M


Thu Mar 27 12:08:18 2008

NJVOA03



81 of 201 ACCUTEST. J85904

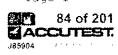
Page 3

Page 4

Page 5

MS Integration Params: RTEINT.P

Quant Time: Mar 26 11:33:11 2008 Quant Results File: M1C2051.RES

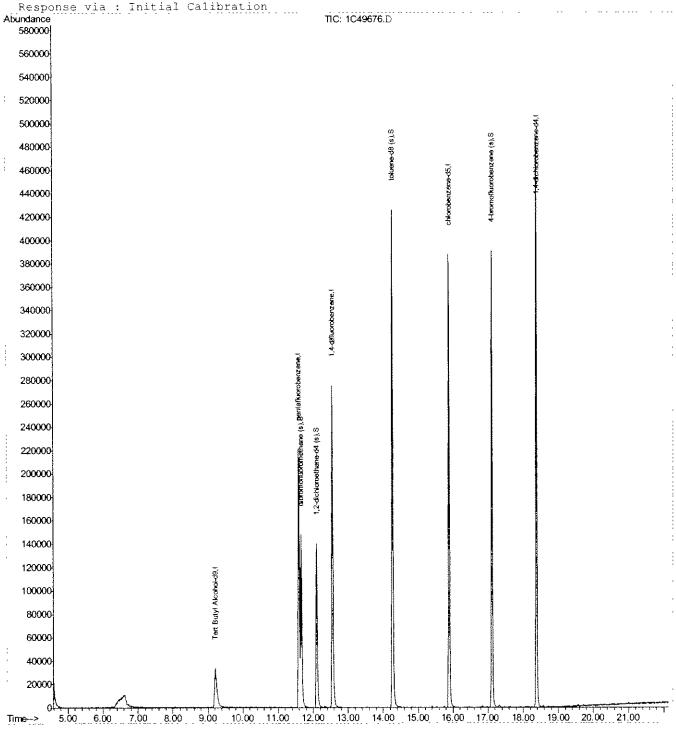

Quant Method : C:\MSDCHEM\1\METHODS\M1C2051.M (RTE Integrator)

Title : SW-846 Method 8260B Last Update : Thu Mar 13 17:13:49 2008 Response via : Initial Calibration

DataAcq Meth : M1C2051

Internal Standards	R.T.	QIon	Response	Conc Ur	nits Dev	(Min)
1) Tert Butyl Alcohol-d9 4) pentafluorobenzene	9.21 11.59	65 168	89188 207074	500.00	-	0.03
46) 1,4-difluorobenzene	12.55	114	272674	50.00	- 2 -	0.00
74) chlorobenzene-d5	15.88	117	258643	50.00	ug/L	0.00
88) 1,4-dichlorobenzene-d4	18.38	152	163334	50.00	ug/L	0.00
System Monitoring Compounds 40) dibromofluoromethane (s) Spiked Amount 50.000 Rand	11.66 qe 68		102379 Recover		-	0.00
41) 1,2-dichloroethane-d4 (s)	12.10	65	147721	45.16	ug/L	0.00
Spiked Amount 50.000 Rans	ge 59	- 136	Recove	cy ≠	90.32€	
66) toluene-d8 (s)	14.27		343968			0.00
Spiked Amount 50.000 Rand	ge 75	- 123	Recove	cy =	93.18%	
90) 4-bromofluorobenzene (s)	17.11	95	143413	49.52	ug/L	0.00
Spiked Amount 50.000 Rand	ge 65	- 140	Recove	ry =	99.04%	

Target Compounds Qvalue


^(#) \approx qualifier out of range (m) = manual integration (+) \approx signals summed 1C49676.D M1C2051.M Thu Mar 27 11:50:14 2008 NJVOA03

MS Integration Params: RTEINT.P

Quant Time: Mar 27 11:50 2008 Quant Results File: M1C2051.RES

Method : C:\MSDCHEM\1\METHODS\M1C2051.M (RTE Integrator)

Title : SW-846 Method 8260B Last Update : Thu Mar 13 17:13:49 2008

1C49676.D M1C2051.M

Thu Mar 27 11:50:14 2008

NJVOA03

MS Integration Params: RTEINT.P

Quant Time: Mar 27 10:56:17 2008 Quant Results File: M1C2051.RES

Quant Method : C:\MSDCHEM\1\METHODS\M1C2051.M (RTE Integrator)

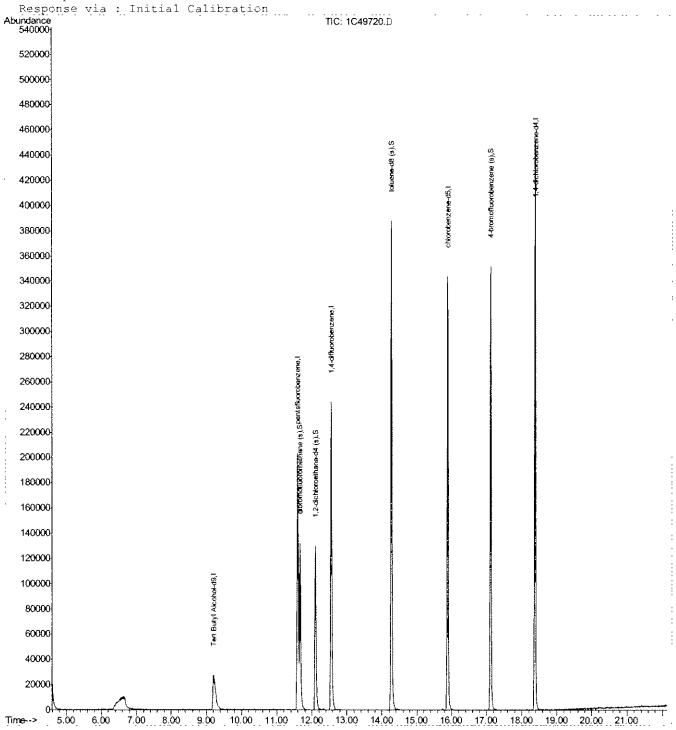

Title : SW-846 Method 8260B Last Update : Thu Mar 13 17:13:49 2008 Response via : Initial Calibration

DataAcq Meth : M1C2051

Internal Standards	R.T.	QIon	Response	Conc Ur	nits Dev	(Min)
I) Tert Butyl Alcohol-d9	9,21	65	79726	500.00		0.03
4) pentafluorobenzene	11.59	168	181744	50.00		0.00
46) 1,4-difluorobenzene	12.55	114	233444	50.00	ug/L	0.00
74) chlorobenzene-d5	15.88	117	224800	50.00	ug/L	0.00
88) 1,4-dichlorobenzene-d4	18.37	152	145105	50.00	ug/L	0.00
System Monitoring Compounds					-	
40) dibromofluoromethane (s)					_	0.00
Spiked Amount 50.000 Rar	nge 68	- 123	Recove	ry =	93.38%	
41) 1,2-dichloroethane-d4 (s)	12.10	65	138720	48.32	ug/L	0.00
Spiked Amount 50.000 Ran	ige 59	- 136	Recove	ry =	96.64%	
66) toluene-d8 (s)	14.27	98	297702	47.10	ug/L	0.00
Spiked Amount 50.000 Rar	ige 75	- 123	Recove	ry =	94.20%	
90) 4-bromofluorobenzene (s)	17.11	95	128163	49.81	ug/L	0.00
Spiked Amount 50.000 Rar	nge 65	- 140	Recove	ry =	99.62%	

Target Compounds Qvalue

(#) = qualifier out of range (m) = manual integration (+) = signals summed 1C49720.D M1C2051.M Mon Mar 31 16:05:16 2008 NJVOA03



MS Integration Params: RTEINT.P

Quant Time: Mar 31 16:05 2008 Quant Results File: M1C2051.RES

Method : C:\MSDCHEM\1\METHODS\M1C2051.M (RTE Integrator)

Title : SW-846 Method 8260B
Last Update : Thu Mar I3 17:13:49 2008
Response via : Thiti-1 Calibration

Mon Mar 31 16:05:17 2008

87 of 201 **ACCUTEST**J85904

NJVOA03 Page 2

1C49720.D M1C2051.M

Data Path : C:\msdchem\1\DATA\vg5270\

Data File: g108725.d

Acq On : 27 Mar 2008 11:10 am

Operator : SCOTTM

Target Compounds

Sample : MB1
Misc : MS62480, VG5270,,,,1, (disp. #14 3/27/08)
ALS Vial : 48 Sample Multiplier: 1

Quant Time: Mar 27 16:46:21 2008

Quant Method: C:\HPCHEM\1\METHODS\MG5266.M

Quant Title : SW-846 Method 8260B QLast Update : Wed Mar 26 17:04:19 2008 Response via : Initial Calibration

Internal Standards	R.T.		Response		nits Dev(Min)
1) Tert Butyl Alcohol-d9	5.835		101512	500.00	
5) pentafluorobenzene	9.595	168	413021	50.00	PPb 0.00
46) 1,4-difluorobenzene	11.602	114	468388	50.00	PPb 0.00
75) chlorobenzene-d5	17.791	117	368359	50.00	PPb -0.02
89) 1,4-dichlorobenzene-d4	22,235	152	202664	50.00	PPb 0.00
System Monitoring Compounds 44) dibromofluoromethane (s) Spiked Amount 50.000 Ra 45) 1,2-dichloroethane-d4 (s)	nge 70	- 120	Recove	ry =	
Spiked Amount 50.000 Ra					
74) toluene-d8 (s)	14.764	98	442986	48.39	PPb 0.00
Spiked Amount 50.000 Ra	nge 75	- 123		-	
90) 4-bromofluorobenzene (s)	20.084	95	236883	45.44	PPb -0.02
Spiked Amount 50.000 Ra	nge 65	- 142	Recove	ry =	90.88%

(#) = qualifier out of range (m) = manual integration (+) = signals summed

mg5266.m Thu Mar 27 16:46:35 2008 NJVMVOA05

88 of 201 ACCUTEST. J85904

Qvalue

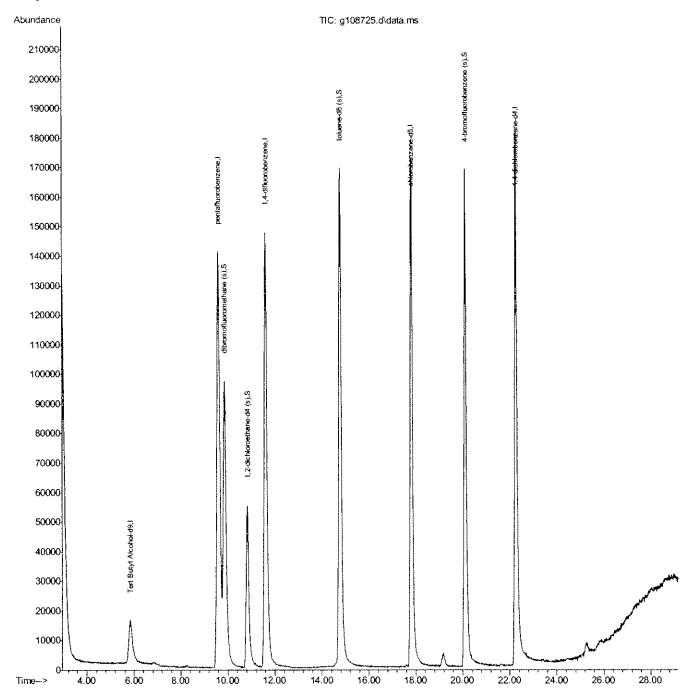
Data Path : C:\msdchem\1\DATA\vg5270\

Data File : g108725.d

Acq On : 27 Mar 2008 11:10 am

Operator : SCOTTM

Sample : MB1


Misc : MS62480, VG5270,,,,1, (disp. #14 3/27/08)

ALS Vial : 48 Sample Multiplier: 1

Quant Time: Mar 27 16:46:21 2008

Quant Method : C:\HPCHEM\1\METHODS\MG5266.M

Quant Title : SW-846 Method 8260B QLast Update : Wed Mar 26 17:04:19 2008 Response via : Initial Calibration

mg5266.m Thu Mar 27 16:46:36 2008 NJVMVOA05

Page: 2

Metals Analysis

QC Data Summaries

Includes the following where applicable:

- Instrument Runlogs
- Initial and Continuing Calibration Blanks
- · Initial and Continuing Calibration Checks
- · High and Low Check Standards
- Interfering Element Check Standards
- Method Blank Summaries
- Matrix Spike and Duplicate Summaries
- Blank Spike and Lab Control Sample Summaries
- Serial Dilution Summaries

Accutest Laboratories Instrument Runlog Inorganics Analyses

Login Number: J85904 Account: EHTXF - Entact Houston Project: Chevron, Perth Ambay

File ID: 1T05Z709M1.DAT Analyst: ND

Parameters: Pb

Date Analyzed: 03/27/08 Run 10: MA20663

Methods: EPA 200.7, 3W846 6010B

Time	Sample	Dilution PS Factor Recov	Comments
09:32	MA20663-STD1	1	STDA
09:38	MA2G663-STD2	1	STDB
09:45	MA29663-STD3	1	STDC
09:51	MA20663-STD4	1	STDD
09:57	MA20663-STD5	1	STDE
10:04	MA20663-5TD6	<u>:</u>	STDF
10:10	MA20663-STD7	*	3TLIG
10:16	MA20663~5TD8	3	STDH
10:22	MA20663-5TD9	1	STDI
10:44	MA20663-ICCV1	1,	
10:51	MA20563-HSTD1	1	
:0:58	MA20663~CRIB1	1	
11:04	MA20663-CRIA1	1	
11:10	MA20663-ICV1	1	
11:17	MA20663-ICB1	1	
11:23	MAZ0663-100V2	1	
11:30	MA20653-CCB2	1	
11:38	MA20663-IC3A1	1	
11:44	MA20663-ICSABL	:	
11:50	MA20663-CCV1	ž	
11:57	MA20663-CCB2	<u>ī</u>	
12:11	ZZZZZZ	<u>1</u>	
12:17	ZZZZZZ	3	
12:23	327272	1	
12:29	MP42995-MB1	1	
12:35	MP42999-B1	Ī	
12:45	MP42999-31	1	
12:47	MP42999-52	3	
12:54	J85520-1	3	(sample used for QC galy; not part of login 585904)
13:00	MP42999-SD1	5	
13:06	MP42998-MB1	1	
13:12	MAZ0663-CCV2	Ĭ	
13:19	MA20663-CCB3	1	

Accutest Laboratories Instrument Funlog Inorganios Analyses

Login Number: J86904 Account: SHTXF - Entacz Houston Project: Chevron, Perth Amboy

Rile ID: IT03Z708M1.DAT Analyst: ND Parameters: Pb

Date Analyzes: 03/27/08 Run 1D: MA20663

Methods: #PA 200.7, SW846 6015B

Ti,me	Sample Descr)ption	Dijution PS Factor Recov	Comments
13:25	MF42998-≒1	1	
13:31	MP42998-S1	1	
13:27	MP42998-S2	í	
13:43	J86330-1	1	(sample used for QC only; not part of login 185904)
13:54	MP42998-S1n	5	
14:00	222222	1	
14:07	ZZZZZZ	1	
14:13	222222	1	an Carryover.
14:23	ZZZ3ZZ	1	
14:29	ZZZZZZ	1	
14:35	MA20663-00V3	1	
14:42	MA20663-CTB4	Ä	
14:49	Z22222	è	
14:56	22222	<u>3</u>	
15:02	MP42965-Sl	1	
15:08	MP41965-S2	î	
15:14	J85917-1F	1	(sample used for QC only; not part of login J85904)
15:20	MP42965-SD1	5	
15:26	322272	1	
15:35	ZZZ Z Z Z	1	
15:41	ZZZZZZ	Z	
15:47	ZZZZZZ	1	
15:54	MA10665-CCV4	ı	
16:00	MA20663-CCB5	ī	
16:40	ZZZZZZ	3	
16:47	ZZZZZZ	1	
16:59	MA20663-CRIBZ	1	
17:05	MA20663-1CSA2	3	
17:12	MA20663-ICSA52	1	
17:18	MA20663-CCV5	3	
17:24	MAZ0663-CCB6	1	
17:3£	MP43031-MB1	1	
17:38	MP43031-B1	1	

Accutest Laboratories Instrument Runlog Inorganics Analyses

Login Number: J85904 Account: EHTXF - Entact Houston Project: Chevron, Perth Amboy

File 1D: IT032708M1.DAT Analyst: ND Date Analyzed: 03/27/08 Run ID: MA20663

Methods: EPA 200.7, SW846 6510B

Parameters: Pb

Time		Dilurion PS Factor Recov	Comments
17:44	MF43031-S1	1	
17:50	MP43031-S2	1	
17:56	J85742-1A	1	(sample used for QC only; not part of login 385904)
18:02	MP43031~\$D1	r,	
18:09	MP42996-MB2	1	
18:15	MP42996~LC1	1.	
18:21	22222	1	
18:27	22222	1	
18:33	MA20663-CCV6	1	
18:40	MA20663-CCB7	1	
18:51	222222	2	
18:57	Z3ZZ7Z	2	
19:03	ZZZZZZ	3	
19:09	MP43029~MB1	1	
19:15	MP43029-B1	*	
19:21	MP43029-S1	3	
19:27	MP43029-52	1	
19:33	J85287-137A	1	(sample used for QC only; not part of login J85904)
19:40	MP43029-\$D1	5	
19:46	MA20663-CĊV?	1	
19:52	MA20663-CCB8	1	
20:00	ZZZZZZ	2	
20:06	ZZZZZZ	2	
20:12	22ZZZZ	1	
20:18	ZZZZZZ	1	
20:24	ZZZZZZ	1	
20:31	ZZZZZ	1	
20:37	ZZZZZZ	1	
20:43	ZZZZZZ	1	
20:49	ZZZZZZ	î	
20:55	MA20663-CCV8	1	
21:01	MA20663-CCB9	1 ~	
21:17	222222	2	

Accutest Laboratories Instrument Runlog lnosganiss Analyses

Logan Number: J85964 Account: BHTXF - Entact Rouston Project: Chevron, Peruh Amboy

file 1D: ZT03Z7U8M1.DAT
Analyst: ND

Parameters: Pb

Date Analyzed: 03/27/08 Run ID: MAZ0663

Mechods: EPA 200.7, SWd46 6010B

Time	Sample Description	Dalution Pactor	PS Recov	Comments
21:23	MF43029-51	2		Dilution not Reeded
21:30	MF43029-52	2		Dilution not needed
21:36	J05287-137H	2		(aample used for QC only; not part of login J85904)
21:42	MP43029-5D1	10		Dilution not needed
21:50	MP43027-MB1	1		
21:56	MP430Z2-B1	1		Rerum of dilution for AS
22:D2	MP43022-S1	3		isol ACOE. Pb > RSTD
22:00	MP43022-97	1		tsol ACOE. Pb > HSTD
22:14	MA20663-CCV9	1		
22:21	MA20663-CCB10	3		
22:27	J86226-1	1		(sample used for QC only; not part of login J85904)
22:33	MP43022-501	5		fsol ACOB, Pb > HSID
22:39	ZFZZZZ	1		
22:46	22223Z	1		
22:52	ZZZZZZ	1		
22:58	222322	1		
23:04	ZZZZZ	<u>1</u>		
	ZZZZZZ	1		
	¥2222Z	1		
23:22	MA20663-CCV10	1		
	MA20663-CCB11	1		
	MA20663-CRIB3	1		
		Ţ		
	MA20663-FCCAB3			
	MA20663-SEV11			
	MA20663-CCB12			
	ZZZZZ2	1		
	232222			
	222223			
	223222	1		
	Z2Z22	1		
	•	1		
00:55	222222	1		

Accutest Laboratories Instrument Runlog Inorganits Analyses

Login Number: J85904 Account: ERTXF - Entact Houston Project: Chevron, Perth Amboy

Fale ID: 1T03Z708M1.DAT

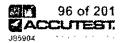
Date Analyzed: 03/27/08 Run ID: MA20663

Methods: EPA 200.7, 5W846 6015B

Analyst: ND Parameters: Pb

Time	Sample Description	Dilution PS Factor Recov	Comments
01:01	ZZZZZ2	1	
01:08	22232	1	
01:14	MA20663-CCV12	1	
01:20	MA20663-CCB13	1	
01:26	2222Z	1	
01:33	ZZ2Z3Z	1	
01:41	MP43023-MB1	1	
01:47	MP43023~B1	1	AS > HSTD
01:53	MP43023~\$1	<u>*</u>	%gol ACOE
01:59	MP43023-S2	7	%sol AcoE
02:05	J86226- <i>Z</i> 1	1	(sample used for QC ofly; not part of login 385904)
02:11	MP430Z3~S51	5	Seol ACOE
02:18	22222	1	
02:34	MA20663-CCV13	2	
01:30	MA20663-CCB24	3	
02:36	ZZ2ZZZ	1	
02:43	32222	<u>1</u>	
02:49	ZZ3ZZZ	1	
07:55	72772	1	
10:60	3222ZZ	1	
03:07	ZZZZZZ	1	
03:13	TTZZZZ	1	
63:19	22222	1	
03:26	223382	1	
03:32	ZZZZZ	<u>}</u>	
63:38	MA20663-CCV1,4	1	
03:44	MA20663-CCB15	1	
03:51	222322	1	
03:57	222222	1	
04:03	22222	1	
04:09	22222	1	
04:15	223223	i	
04:21	IZZZZZ	1	

Accutest Laboratories Instrument Runlog Inorganics Analyses


Login Number: J85904 Account: EHTXF - Entarr Houston Project: Chevron, Perth Amboy

File ID: 1T032708M1.DAT Analyst: ND Parameters: Pb

Date Analyzed: 03/27/08 Methods: EPA 250.7, 3W846 60103 Run 1D: MA20663

---->

Time		Dilution Factor	PS Recov	Comments
04:27	227222	1		
04:34	ZZZZZZ	1		
04:40	MA20663-CCV15	1		
04:46	MA20663-CC516	1		
04:52	222223	1		
04:59	ZZZZZ <i>Z</i>	1		
05:05	222222	1		
05:11	23 3 222	1		
05:17	ZZZZZZ	1		
05:23	227722	1		
05:29	22222	1		
05:35	ZZ2222	1		
05:42	J85904-1A	1		CCB out
Last r	J85904-2A eportable sample MA20663-CZV16	1 /pref for 1	10b J8590	CCB cut
06:00	MA20663-CCB17			
06:07	MP43030-MB1	1		CCV out
06:13	MP43030-B1	1		CCV gut
06:19	MP43030~51	1 -		CSV out
06:25	MP43020-S2	1		fCV out
06:21	J85287-16A	î		(sample used for QC only; nor part of login J85904)
06:37	MP43030~SD1	5		CCV our
06:43	222222	2		
06:50	ZZZZZZ	2		
06:59	MP43022-SD1	5		Ssol CCV cut for Fb
07:05	MA20663-CCV17	1		
07:11	MA20662-CCB18	1		
07:40	MA20663-CR1B4	1		
07:46	MAZ0663-1CSA4	1		
07:52	MA20663-1CTAB4	1		
07:59	MA20663-CCV18	ز		
Last r	MA20663-CCP19 eportable CJB fo. 202222		104	
Refer	to raw data for	calibratio	n chine s	กที่ standards.

Login Number: 785904 Acceptit: EHIXF - Entact Hobston Project: Chevron, Perth Amboy

File ZD: 1T03Z708M1.DAT Analyst: ND Parameters: Pb

Date Analyzed: 03/27/08 Run ID: MAZII663

Methods: EPA 200.7, SW846 6010B

Time	Sample Description	lstd ∜ l
09:32	MA20663-STD3	71638 R
09:38	MAZ0663-STDZ	72208
09:45	MA20663-STD3	71983
09:51	MA20663-STD4	72489
09:57	MA20663-STD5	72380
10:04	MA20663-STD6	71223
10:10	MA20663-STD7	70741
10:36	MA20663-STD8	70125
10:22	MA20663-STD9	69967
10:44	MA20663-ICCV1	70544
10:51	MAZ0663-HSTD1	69691
10:58	MA20663-CRIBI	71294
11:04	MAZ0663-CRIA1	70893
11:16	MA20663-TCV1	70456
11:27	MA20663-1CB1	20972
11:23	MA20663-1CCV2	69284
11:30	MA20663-CCB1	10910
11:38	MA20663-1CSA1	65336
11:44	MA20663-1[SAB1	65369
11:50	MA20663-JCV1	68305
11:57	MA20663-CCB2	69501
12:11	222222	70848
12:17	ZZ ZZ 3 Z	69855
12:23	IZZZZZ	89626 !
12:29	MP42999-IB1	67477
12:35	MP42999-B1	67113
12:41	MP42999-S1	66949
12:47	MP42999-S2	6699?
12:54	J85520-1	66978
13:00	MP42999-501	68763
13:06	MP42998-MB1	66816
13:12	MA20663-CCV2	67547
13:19	MA20663-CCB3	68835

Login Number: J85994 Account: EHTXF - Entact Houston Project: Chevron, Perth Amboy

File 1D: 1T032708M1.5AT Analyst: ND

Analyst: ND Parameters: Pb Date Apalyzed: 03/27/08 Run 1D: MAZ0662

Methods: EPA 200.7, \$W846 6010B

Tìm∉	Sample Description	lstd ∤l
12:25	MP42998-B3	5£529
13:31	MP42998-51	66411
13:57	MP42998-52	66362
13:42	J86330-1	€6225
13:54	MP42998-SD1	68017
14;00	22222	64584
14:07	22222	66069
24:13	222232	68286
14:23	22222	68703
14:29	222223	68184
£4:35	MA20663-CCV3	67693
14:42	MA20661-CCB4	6918E
14:49	227222	59140
14:56	22222	68257
15:02	MP42985-51	68871
15:08	MP42965-52	69387
15:14	J85917-1F	70092
15:20	MP42965-5D1	70087
15:26	22222	69734
15:35	222222	6559€
15:41	Z3Z7,2Z	£7289
15:47	ZZ22ZZ	69612
15:54	MA20663-CCV4	67999
16:00	MA20665-CCB5	€₽933
16:40	222322	66961
36:47	222222	62984
26:59	MA20863-CR5B2	68756
35:05	MA20663-15SA2	65029
17:12	MA20663-1CSAB2	64279
17:38	MA20663-CCY5	67376
17:24	MA20662-CCB6	68137
17:33	MP43031-MB1	65609
17:38	MP43021-B1	65953

Logic Number: J85904 Account: EHTXF - Entact Houston Project: Chevron, Perth Amboy

File 1D: 1T032708M1.DAT Analyst: N5 Parametero: Pb

Date Analyzed: 03/27/08 Run ID: MAZ0663

Methods: EPA 200.7, JW846 6010B

	Sample	
Time		lstd#l
37:44	MP43031-51	66360
17:50	MP43031-S2	66238
17:56	J85743-1A	66258
18:02	MP43031-SD1	67715
18:09	MP42996~MB2	65795
18:15	MP42996-LU1	67958
18:21	322338	66450
18:27	222222	66413
18:33	MA20663-CÇV6	á7482
:8:40	MA20663-CCB7	69903
18:51	223223	67856
18:57	ZZZZZZ	67157
19:03	Z22ZZ2	67681
19:09	MP43029-MB1	65902
19:15	MP43029-B1	66416
19:21	MF43029-S1	65218
19;27	MP43029-S2	65572
19:33	J35287-137A	65740
19:40	MP43029-SD1	68429
19:46	MA20663-00V7	68477
19:52	MA20663-CCB8	70129
	22252Z	67139
	ZZZZZZ	67724
	Z3ZZ3 <u>Z</u>	67118
	222223	67927
	222322	67246
	22232Z	67459
	322332	€8077
	272823	67363
	32Z32Z	67404
	MA20663-CCV8	67997
	MA20663-CCV8	69138
	3232ZZ	67015
C-11/	202000	0.029

Login Number: J85904 Account: EHTXF + Entact Houston Project: Chevrot, Perth Ambay

File 35: IT032708M1.DAT Analyst: ND Parameters: Pb

Sate Analyzed: 03/27/08 Run ID: MA20663

Methods: EPA 200.7, SW846 60109

21:30 Mi 21:36 JE 21:42 Mi 21:50 ME 21:50 ME 22:02 ME 22:02 ME 22:14 MA 22:21 MA 22:27 JE 22:33 ME 22:39 ZZ 22:46 ZZ 22:58 ZZ 23:10 ZZ 23:10 ZZ 23:10 ZZ 23:10 ZZ 23:10 MA 23:53 MA 23:53 MA 00:00 MA	Sample Description	n Îstd ∮ 1
21:36 JE 21:42 ME 21:50 ME 21:56 ME 22:02 ME 22:08 ME 22:14 MA 22:21 MA 22:21 MA 22:23 ME 22:33 ME 22:34 ZZ 22:46 ZZ 23:10 ZZ 23:	MP42029+S1	66700
21:42 ME 21:50 ME 21:50 ME 22:02 ME 22:02 ME 22:14 ME 22:21 ME 22:27 JE 22:33 ME 22:39 ZZ 22:46 ZZ 22:58 ZZ 23:10 ZZ 23:10 ZZ 23:10 ZZ 23:10 MA 23:53 MA 23:53 MA 00:00 MA 00:06 MA 00:06 MA 00:01 MA 00:01 MA 00:02 ZZ 00:31 ZZ 00:43 ZZ 00:43 ZZ 00:449 ZZ	MP43629+82	66148
21:50 ME 21:56 ME 22:08 ME 22:14 ME 22:21 ME 22:23 ME 22:33 ME 22:34 23 22:52 32 22:46 23 23:10 22 23:10 22 23:10 ZZ 23:	J85287-137A	A 66598
21:56 ME 22:02 ME 22:04 ME 22:21 ME 22:27 JE 22:39 ZE 22:46 ZE 22:52 JE 22:04 ZE 23:10 ZE 23:10 ZE 23:10 MA 00:06 MA 00:06 MA 00:06 MA 00:12 MA 00:05 ZE 00:25 ZE 00:31 ZE 00:43 ZE 00:44 ZE 23:20 MA 24:20 MA 25:20 MA 26:20 MA 27:20 MA 27:20 MA 28:20 MA 28:	MP430Z9-SD1	1 68479
22:02 ME 22:14 ME 22:21 ME 22:23 ME 22:33 ME 22:34 23 22:52 32 22:58 22 23:10 22 23:10 22 23:10 ZZ 23:16 ZZ 23:27 MA 23:29 MA 23:29 MA 23:47 MA 20:00 MA 00:06 MA 00:06 MA 00:12 MA 00:12 MA 00:12 MA 00:12 MA 00:13 ZZ 00:31 ZZ 00:31 ZZ 00:43 ZZ	MP43022-MB1	1 69277
22:08 ME 22:14 ME 22:21 ME 22:27 36 22:39 22 22:46 23 22:52 32 23:04 22 23:10 22 23:16 22 23:29 MA 23:29 MA 23:29 MA 23:47 MA 23:53 MA 00:00 MA 00:06 MA 00:12 MA 00:12 MA 00:12 MA 00:13 ZZ 00:37 ZZ 00:43 ZZ 00:449 ZZ	MP43022-B1	6823₽
Z2:14 MAR 22:21 MAR Z2:23 MAR Z2:33 MAR Z2:39 Z2 Z2:52 X2 Z2:58 Z2 Z3:10 Z2 Z3:16 Z2 Z3:27 MAR Z3:47 MAR 00:06 MAR 00:07 MAR 00:12 MAR 00:12 MAR 00:12 MAR 00:12 MAR 00:13 Z2 00:37 Z2 00:49 Z2 00:49 Z2	MP43022-S1	78246
22:21 MAR 22:27 36 22:33 ME 22:39 22 22:46 23 22:52 32 23:04 22 23:10 22 23:16 22 23:16 22 23:29 MAR 23:29 MAR 23:53 MAR 00:00 MAR 00:06 MAR 00:12 MAR 00:12 MAR 00:12 MAR 00:12 MAR 00:13 22 00:37 22 00:43 22 00:49 22	MP43022-S2	76889
22:27 368 22:33 ME 22:39 22 22:46 23 22:52 32 22:58 22 23:10 22 23:10 22 23:16 22 23:27 MA 23:29 MA 23:47 MA 23:53 MA 00:00 MA 00:06 MA 00:12 MA 00:12 MA 00:12 MA 00:12 MA 00:13 22 00:31 22 00:31 22 00:43 22 00:49 22	MA20663-CCV9	V9 68590
22:33 ME 22:39 Z2 22:46 Z3 22:52 Z2 23:04 Z2 23:16 Z2 23:16 Z2 23:29 MA 23:29 MA 23:29 MA 00:00 MA 00:06 MA 00:06 MA 00:12 MA 00:12 MA 00:12 MA 00:12 Z2 00:31 Z2 00:37 Z2 00:43 ZZ	MA20663-CCB10	B10 70248
22:39 22 22:46 23 22:52 32 22:58 22 23:10 22 23:16 22 23:22 MA 23:29 MA 23:53 MA 00:00 MA 00:06 MA 00:12 MA 00:12 MA 00:12 MA 00:13 22 00:31 22 00:37 22 00:43 22	J84226-1	79065
22:46 23 22:52 37 22:58 22 23:04 22 23:10 22 23:16 22 23:29 MA 23:29 MA 00:00 MA 00:06 MA 00:12 MA 00:12 MA 00:12 MA 00:13 22 00:25 22 00:31 28 00:37 22 00:49 22	MP43022-SD1	1 72181
22:52	ZZZ22Z	83901
22:58 22 23:10 22 23:16 22 23:22 MA 23:29 MA 23:53 MA 00:00 MA 00:06 MA 00:12 MA 00:19 22 00:25 22 00:31 22 00:37 22 00:49 22	23222Z	74039
22:04 22 23:10 22 23:16 22 23:22 MA 23:29 MA 23:47 MA 00:00 MA 00:06 MA 00:12 MA 00:19 22 00:25 22 00:31 22 00:37 22 00:43 22	9222ZZ	769B9
23:10 ZZ 23:16 ZZ 23:27 MA 23:29 MA 23:47 MA 00:00 MA 00:06 MA 00:12 MA 00:19 ZZ 00:25 ZZ 00:31 ZZ 00:37 ZZ 00:43 ZZ	ZZ 232Z	75799
23:16 ZZ 23:27 MA 23:29 MA 23:47 MA 00:00 MA 00:06 MA 00:12 MA 00:19 ZZ 00:25 ZZ 00:31 ZZ 00:37 ZZ 00:43 ZZ	22222	76592
23:27 MAR 23:29 MAR 23:53 MAR 00:00 MAR 00:12 MAR 00:19 ZZ 00:25 ZZ 00:31 ZZ 00:37 ZZ 00:43 ZZ 00:49 ZZ	ZZZZZZ	75011
23:29 MAR 23:47 MAR 23:53 MAR 00:00 MAR 00:12 MAR 00:19 ZZ 00:25 ZZ 00:31 ZZ 00:37 ZZ 00:43 ZZ 03:49 ZZ	ZZ Z 2,7,2	73477
23:47 MA 23:53 MA 00:00 MA 00:12 MA 00:19 ZZ 00:25 ZZ 00:31 ZZ 00:37 ZZ 00:43 ZZ	MA20663-CCV10	V10 €8107
23:53 MA 00:00 MA 00:01 MA 00:12 MA 00:19 ZZ 00:25 ZZ 00:31 ZZ 00:37 ZZ 00:43 ZZ 03:49 ZZ	MA20663-CCB11	B11 69617
00:00 MA 00:12 MA 00:19 ZZ 00:25 ZZ 00:31 ZZ 00:37 ZZ 00:43 ZZ	MA20663-CRIB3	IB3 69709
00:06 MA 00:12 MA 00:19 ZZ 00:25 ZZ 00:31 ZZ 00:43 ZZ 03:49 ZZ	MA20665-1CSA3	SA3 64587
00:12 MA 00:19 ZZ 00:25 ZZ 00:31 ZZ 00:37 ZZ 00:43 ZZ 03:49 ZZ	MA20663-ICSAB3	SAB3 64237
00:19 22 00:25 22 00:31 22 00:37 22 00:43 22 06:49 22	MA20663-CCV11	V11 6776 4
00:25 ZZ 00:31 ZZ 00:37 ZZ 00:43 ZZ 06:49 ZZ	MA20663-5CB1 <i>2</i>	B1 <i>2</i> 69527
00:31 ZZ 00:37 ZZ 00:43 ZZ 06:49 ZZ	ZZZZZZ	74237
00:37 ZZ 00:43 ZZ 06:49 ZZ	ZZZ ZZ %	81944
00:43 2Z 06:49 ZZ	X2ZZZ3	73337
06:49 ZZ	22222	77152
	ZZZZZZ	75820
00:55 %%	ZZZZZZ	75242
	ZZZ ZZZ	75059

Login Number: J65904 Account: FSTXF - Entact Houston Project: Chevron, Perth Amboy

File iD: IT032708Ml.DAT Analyst: ND Parameters: Pb

Date Analyzed: 03/27/08 Run ID: MA20663

Methods: SPA 200.7, SW846 6010B

01:01 ZZZZZZ 74576 02:08 ZZZZZZ 73447 03:14 MA20663-CCVYZ 68010 03:20 MA20663-CCB13 69285 01:26 ZZZZZZ 74828 01:33 ZZZZZZ 78898 01:41 MP43023-MB1 69356 01:47 MP43023-B1 68196 01:59 MP43023-SZ 75563 02:05 J86226-21 78105 02:11 MF43023-SDL 70652 02:18 ZZZZZZ 75620 02:24 MA20663-CCV13 68225 02:30 MA20663-CCV13 68225 02:31 ZZZZZZ 74751 02:43 ZZZZZZ 72398 02:49 ZZZZZZ 72398 02:55 ZZZZZZ 74577 03:01 ZZZZZZ 77772 03:13 ZZZZZZ 7105 03:26 ZZZZZZ 71076 03:38 MA20663-CCV14 67662 03:44	Time	Sample Description	∑std # 1
01:14 MA20663-CCVIC 68010 01:20 MA20663-CCBL3 69285 01:23 ZZZZZZ 74828 01:41 MP43023-MB1 69356 01:47 MP43023-B1 69196 01:59 MP43023-S2 75563 02:11 MF43023-SDL 70852 02:12 MF43023-SDL 70852 02:13 MF43023-SDL 70852 02:14 MF43023-SDL 70852 02:13 ZZZZZZZ 75620 02:24 MA20663-CCV13 68225 02:36 ZZZZZZZ 72398 02:37 ZZZZZZZ 72646 02:49 ZZZZZZZ 72598 02:30 ZZZZZZZ 72598 02:49 ZZZZZZZ 77772 03:01 ZZZZZZZ 77772 03:03 ZZZZZZZ 71105 03:19 ZZZZZZZ 71076 03:32 ZZZZZZZ 71076 03:33 MA20663-CCV14 67662 03:44 MA20663-CCV4 67662 03:45 ZZZZZZZ<			
01:20 MA20663-CCB13 69285 01:26 ZZZZZZ 74828 01:31 ZZZZZZ 78898 01:41 MP43023-MB1 69356 01:47 MP43023-B1 69196 01:53 MP43023-S1 76944 01:59 MP43023-S2 75563 02:11 MF43023-SD1 70852 02:12 MA20663-CCV13 68225 02:24 MA20663-CCV13 68225 02:36 ZZZZZZ 74751 02:49 ZZZZZZ 72398 02:49 ZZZZZZ 74577 03:01 ZZZZZZ 74577 03:01 ZZZZZZZ 77772 03:02 ZZZZZZZ 71005 03:13 ZZZZZZZ 71076 03:25 ZZZZZZZ 71076 03:26 ZZZZZZZ 71076 03:31 ZZZZZZZ 71076 03:44 MA20663-CCV14 67662 03:44 MA20663-CCV14 67662 03:57 ZZZZZZ 74339 03:57 ZZZZZZZ <td< td=""><td>02:08</td><td>222232</td><td>73441</td></td<>	02:08	222232	73441
01:26 ZZZZZZZ 74828 01:33 ZZZZZZZ 78898 01:47 MP43023-MB1 69196 01:59 MP43023-SI 75563 02:11 MF43023-SDL 70852 02:12 MF43023-SDL 70852 02:13 MF43023-SDL 70852 02:14 MF43023-SDL 70852 02:18 ZZZZZZZ 75620 02:24 MA20663-CCV13 68225 02:36 ZZZZZZZ 72398 02:36 ZZZZZZZ 72398 02:49 ZZZZZZZ 72546 02:36 ZZZZZZZ 72598 02:49 ZZZZZZZ 72598 02:35 ZZZZZZZ 72598 03:43 ZZZZZZZ 77772 03:07 ZZZZZZZ 71105 03:19 ZZZZZZZ 71076 03:26 ZZZZZZ 71076 03:31 MA20663-CCV14 67662 03:44 MA20663-CCV14 67622 03:	03:14	MA20663-CCV12	68010
01:33 ZZZZZZ 78898 01:41 MP43023-MB1 69356 01:43 MP43023-B1 68196 01:53 MP43023-S1 76944 01:59 MP43023-S2 75563 02:05 J86226-21 78105 02:11 MP43023-SD1 70852 02:18 ZZZZZZ 75620 02:24 MA20663-CCV13 68225 02:36 ZZZZZZ 74751 02:49 ZZZZZZZ 72398 02:49 ZZZZZZZ 74577 03:01 ZZZZZZZ 7772 03:01 ZZZZZZZ 75662 03:13 ZZZZZZZ 75772 03:13 ZZZZZZZ 75656 03:14 ZZZZZZZ 71005 03:25 ZZZZZZZ 71076 03:32 ZZZZZZZ 71076 03:34 MA20663-CCV14 67662 03:44 MA20663-CCB15 68829 03:57 ZZZZZZZ 77186 04:03	01:20	MA20663-CCB13	69285
01:41 MP43023-MB1 69356 01:47 MP43023-B1 69196 01:59 MP43023-S2 75563 02:05 J86226-21 78105 02:11 MF43023-SD1 70652 02:12 MF43023-SD1 70652 02:13 J822222 75620 02:24 MA20663-CCV13 66225 02:36 Z2ZZZZ 74751 02:49 ZZZZZZ 72646 02:49 ZZZZZZZ 72598 02:49 ZZZZZZZ 74577 03:01 ZZZZZZZ 77772 03:01 ZZZZZZZ 77772 03:13 ZZZZZZZ 71105 03:19 ZZZZZZZ 71105 03:26 ZZZZZZZ 71076 03:32 ZZZZZZZ 71076 03:34 MA20663-CCV14 67662 03:44 MA20663-CCV14 67662 03:57 ZZZZZZ 77186 03:57 ZZZZZZZ 77186 04:03 <td>01:26</td> <td>22222</td> <td>74828</td>	01:26	22222	74828
01:47 MP43023-B1 68196 01:53 MP43023-S1 76944 01:59 MP43023-S2 75563 02:05 386226-21 78105 02:11 MF43023-SD1 70652 02:18 222222 75620 02:24 MA20663-CCV13 68225 02:30 MA20662-CCB14 69239 02:43 222222 72646 02:49 222222 72398 02:55 232222 74577 03:01 222222 77772 03:03 222222 71105 03:13 222222 71076 03:26 222222 71076 03:27 222222 71076 03:28 222222 71076 03:32 222222 71076 03:33 4420663-CCV14 67662 03:44 4420663-CCV14 67662 03:51 222222 7233 03:52 222222 724339 03:51 222222 7292 04:03 222222 7292 </td <td>01:33</td> <td>22222</td> <td>T8898</td>	01:33	22222	T8898
01:53 MP43023-S1 76944 01:59 MP43023-SZ 75563 02:01 MF43023-SDL 70e52 02:11 MF43023-SDL 70e52 02:18 22ZZZZ 75620 02:24 MA20663-CCV13 68225 02:30 MA20663-CCB14 69239 02:36 22ZZZZ 72646 02:49 2ZZZZZ 72398 02:49 2ZZZZZZ 74577 03:01 2ZZZZZZ 77772 03:03 2ZZZZZZ 71105 03:13 2ZZZZZZ 71106 03:25 2ZZZZZZ 71076 03:32 2ZZZZZZ 71076 03:33 14A20663-CCV14 67662 03:44 14A20663-CCB15 68829 03:57 2ZZZZZZ 77186 04:03 2ZZZZZZ 78272 04:03 2ZZZZZZ 77498 04:03 2ZZZZZZ 72953	01:41	MP43023-MB1	69356
01:59 MP43023-SZ 75563 02:05 386226-21 78105 02:11 MF43023-SDL 70852 02:18 22ZZZZ 75620 02:24 MA20663-CCV13 68225 02:30 MA20662-CCB14 69239 02:43 22ZZZZ 72646 02:43 2ZZZZZ 72398 02:55 2ZZZZZ 74577 03:01 2ZZZZZ 77772 03:03 3ZZZZZZ 71105 03:13 2ZZZZZZ 71107 03:26 2ZZZZZ 71076 03:32 2ZZZZZ 71076 03:32 2ZZZZZ 71076 03:34 MA20663-CCV14 67662 03:44 MA20663-CCV14 67662 03:51 ZZZZZZ 71186 04:03 ZZZZZZ 78277 04:03 ZZZZZZ 77186 04:03 ZZZZZZ 78295	01:47	MP43023-B1	69196
02:05 386226-21 78105 02:11 MF43023-SD1 70852 02:18 22ZZZZ 75620 02:24 MA20663-CCV13 68225 02:30 MA20662-CCB14 69239 02:36 22ZZZZ 74751 02:49 2ZZZZZ 72398 02:55 2ZZZZZ 7457 03:01 2ZZZZZ 77772 03:13 2ZZZZZZ 71105 03:14 2ZZZZZZ 71076 03:32 2ZZZZZZ 71076 03:33 MA20663-CCV14 67662 03:44 MA20663-CCB15 68829 03:57 ZZZZZZ 77186 04:03 ZZZZZZ 78277 04:03 ZZZZZZZ 77186 04:03 ZZZZZZZ 77298 04:03 ZZZZZZZ 77298 04:03 ZZZZZZZ 77298	01:53	MP43023-S1	?6944
02:11 MF43023-SD1 70852 02:18 232272 75620 02:24 MA20663-CCV13 68225 02:30 MA20663-CCV14 69239 02:36 222222 74751 02:43 222222 72646 02:49 222222 78222 03:01 222222 74577 03:07 342222 77772 03:13 222222 71105 03:26 222222 71076 03:32 222222 71076 03:34 MA20663-CCV14 67662 03:44 MA20663-CCV14 67662 03:51 222222 71186 04:03 233222 724339 03:57 222222 77186 04:03 233222 78277 04:03 232222 77186 04:03 232222 78277 04:03 232222 79827 04:03 243222 78277 04:03 272222 </td <td>01:59</td> <td>MP43023-SZ</td> <td>75563</td>	01:59	MP43023-SZ	75563
02:18 23ZZZZ 75620 02:24 MA20663-CCV13 68225 02:30 MA20662-CCB14 69239 02:36 22ZZZZ 74?51 02:43 2ZZZZZ 72646 02:49 ZZZZZZ 78222 03:01 ZZZZZZ 74577 03:07 ZZZZZZ 77772 03:13 ZZZZZZZ 71105 03:26 ZZZZZZ 71076 03:32 ZZZZZZ 71076 03:34 MA20663-CCV14 67662 03:44 MA20663-CCB15 68829 03:57 ZZZZZZ 77186 04:03 ZZZZZZ 78277 04:09 ZZZZZZ 74998 04:15 ZZZZZZ 72953	07:05	386226-21	78105
02:24 MA20663-CCV13 68225 02:30 MA20663-CCB14 69239 02:36 ZZZZZZ 74751 02:43 ZZZZZZZ 72646 02:49 ZZZZZZ 78222 03:01 ZZZZZZ 74577 03:07 3ZZZZZ 77772 03:13 ZZZZZZ 71105 03:26 ZZZZZZ 71076 03:32 ZZZZZZ 71076 03:34 MA20663-CCV14 67662 03:44 MA20663-CCB15 68829 03:51 ZZZZZZ 77186 04:03 ZXZZZZZ 78277 04:03 ZXZZZZZ 74398 04:15 ZZZZZZZ 72953	02:11	MF43023-SDl	70052
02:30 MA20662-CCB14 69239 02:36 ZZZZZZZ 74751 02:49 ZZZZZZZ 72398 02:55 ZZZZZZZ 78222 03:01 ZZZZZZZ 74577 03:07 ZZZZZZZ 77772 03:13 ZZZZZZZ 71005 03:26 ZZZZZZZ 71076 03:32 ZZZZZZZ 71076 03:34 MA20663-CCV14 67662 03:44 MA20663-CCB15 68829 03:57 ZZZZZZ 77186 04:03 ZZZZZZ 78277 04:09 ZZZZZZ 74998 04:15 ZZZZZZZ 72953	02:18	22222	75620
02:36 22ZZZZZ 74?51 02:43 2ZZZZZZ 72646 02:49 ZZZZZZZ 78ZZZ 02:55 ZZZZZZZ 74577 03:01 ZZZZZZZ 77772 03:13 ZZZZZZZ 71105 03:26 ZZZZZZ 71076 03:32 ZZZZZZ 71076 03:34 MA20663-CCV14 67662 03:44 MA20663-CCB15 68829 03:51 ZZZZZZ 77186 04:03 ZXZZZZZ 78277 04:03 ZXZZZZZ 74998 04:15 ZZZZZZZ 72953	02:24	MA20663-CCV13	68225
02:43 ZZZZZZZ 72646 02:49 ZZZZZZZ 72398 02:55 ZZZZZZZ 78722 03:01 ZZZZZZZ 74577 03:07 ZZZZZZ 77772 03:13 ZZZZZZZ 71105 03:26 ZZZZZZZ 73733 03:32 ZZZZZZZ 71076 03:38 MA20663-CCV14 67662 03:44 MA20663-CCB15 68829 03:51 ZZZZZZ 77186 04:03 ZZZZZZ 78277 04:09 ZZZZZZ 74998 04:15 ZZZZZZZ 72953	02:30	MA20663-CCB14	69239
02:49 ZZZZZZZ 72398 02:55 ZZZZZZZ 78222 03:01 ZZZZZZZ 74577 03:07 3ZZZZZZ 77772 03:13 ZZZZZZZ 71105 03:26 ZZZZZZ 71076 03:32 ZZZZZZ 71076 03:34 MA20663-CCV14 67662 03:44 MA20663-CCB15 68829 03:51 ZZZZZZ 77186 04:03 ZXZZZZ 78277 04:03 ZXZZZZZ 74998 04:15 ZZZZZZZ 72953	02:36	222222	74?51
02:55 ZZZZZZZ 78ZZZ 03:01 ZZZZZZZZ 74577 03:07 3ZZZZZZ 77772 03:13 ZZZZZZZ 75656 03:19 ZZZZZZZ 71105 03:26 ZZZZZZZ 71076 03:32 ZZZZZZZ 71076 03:34 MAZ0663-CCV14 67662 03:44 MAZ0663-CCB15 68829 03:51 ZZZZZZ 77186 04:03 ZZZZZZ 78277 04:09 ZZZZZZ 74998 04:15 ZZZZZZZ 72953	02:43	ZZZZZZ	72646
03:01 ZZZZZZZ 74577 03:07 3ZZZZZZ 77772 03:13 ZZZZZZZ 71205 03:29 ZZZZZZZ 71205 03:32 ZZZZZZZ 71076 03:33 MAZ0663-CCV14 67662 03:44 MAZ0663-CCB15 68829 03:51 ZZZZZZ 77186 04:03 ZZZZZZ 78277 04:03 ZZZZZZ 74998 04:15 ZZZZZZ 72953	02:49	ZZZZZZ	72398
03:07 32ZZZZZ 77772 03:13 2ZZZZZZ 75656 03:19 ZZZZZZ 71105 03:26 ZZZZZZ 73733 03:32 ZZZZZZZ 71076 03:38 MAZ0663-CCV14 67662 03:44 MAZ0663-CCB15 68829 03:51 ZZZZZZ 77186 04:03 ZZZZZZ 78277 04:09 ZZZZZZ 74998 04:15 ZZZZZZ 72953	02:55	ZZZZZZ	78722
03:13 2ZZZZZZ 75656 03:19 ZZZZZZZ 71105 03:26 ZZZZZZ 73733 03:32 ZZZZZZZ 71076 03:38 MA20663-CCV14 67662 03:44 MA20663-CCB15 68829 03:51 ZZZZZZ 77186 04:03 ZZZZZZ 78277 04:03 ZZZZZZ 74998 04:15 ZZZZZZ 72953	03:01	22222	74577
03:19 ZZZZZZZ 71105 03:26 ZZZZZZZ 73733 03:32 ZZZZZZZ 71076 03:38 MAZ0663-CCV14 67662 03:44 MAZ0663-CCB15 68829 03:51 ZZZZZZ 74339 03:57 ZZZZZZZ 77186 04:03 ZZZZZZ 74998 04:15 ZZZZZZ 72953	03:07	342222	77772
03:26 ZZZZZZ 73733 03:32 ZZZZZZZ 71076 03:38 MA20663-CCV14 67662 03:44 MA20663-CCB15 68829 03:51 ZZZZZZ 74339 03:57 ZZZZZZ 77186 04:03 ZZZZZZ 78277 04:09 ZZZZZZ 74998 04:15 ZZZZZZ 72953	03:13	ZZZ ZZ Z	T5656
03:32 ZZZZZZZ 71076 03:38 MAZ0663-CCV14 67662 03:44 MAZ0663-CCB15 68829 03:51 ZZZZZZ 74339 03:57 ZZZZZZ 77186 04:03 ZZZZZZ 78277 04:09 ZZZZZZ 74998 04:15 ZZZZZZ 72953	03:19	ZZZZZZ	71205
03:38 14A20663-CCV14 67662 03:44 14A20663-CCB15 68829 03:51 22ZZZZ 74339 03:57 ZZZZZZ 77186 04:03 2ZZZZZ 78277 04:09 ZZZZZZ 74998 04:15 ZZZZZZ 72953	03:26	2222Z	73733
03:44 MA20663-CCB15 68829 03:51 ZZZZZZZ 74339 03:57 ZZZZZZZ 77186 04:03 ZZZZZZZ 78277 04:09 ZZZZZZZ 74998 04:15 ZZZZZZZ 72953	03:32	ZZZZZZ	71076
03:51 \$22222 74239 03:57 \$22222 77186 04:03 \$22222 78277 04:09 \$22222 74998 04:15 \$222222 72953	03:38	MA20663-CCV24	67662
03:57 ZZZZZZ 77:186 04:03 Z%ZZZZ 782:77 04:09 ZZZZZZ 749:98 04:15 Z%ZZZZ 729:53	03:44	MA20663-ССВ15	68829
04:03 2%3222 78277 04:09 222222 74998 04:15 2%2222 72953	03:51	2222Z	74339
04:09 ZZZZZZ 74998 04:15 ZZZZZZ 72953	03:57	ZZZZZZ	77186
04:15 222222 72953	04:03	ZZZZZZ	78277
	04:09	22222	74998
04:21 ZZZZZZ 73867	04:15	ZZZZZZ	72953
	04:21	ZZ ZZ ZZ	73867

Login Number: J85904 Account: EHTXF - Entact Houston Project: Chevron, Perth Amboy

File ID: 17032708M1.DAT

Date Analyzed: 03/27/08 Eun 1D: MA20663

Methods: EPA 200.7, SW846 60103

Analyst: ND Paramerers: Pb

Time	Sample Description	lstd # l
04:27	32ZZZZ	75309
04:34	ZZZZZZ	73367
4:40	MA20563-CCV15	€7511
4:46	MA20663~CCB16	68142
4:52	33ZZZZ	65860
4:59	ZZZ32Z	66262
5:05	ZZZZZZ	66119
5:11	ZZZZZZ	64771
5:17	Z22ZZ	66588
5:23	2 Z 3ZZZ	66629
5:29	333272	67363
5:35	Z3ZZ3Z	68700
5:42	J85904-1A	6?296
5:48	J85904-2A	66745
5:54	MA20663-CCV16	68118
6:00	MA20663-CCB17	69622
6:1)7	MR43030-MB1	70677
6:13	MP43030-B1	70698
6:19	MP43036-S1	68960
6:25	MP43030-S2	69191
6:31	J85287-16A	69467
6:37	MF43030~SD1	69057
6:43	ZZZZZZ	72568
6:50	ZZZZZZ	71996
6:59	MP43022-SD1	71382
7:05	MA20663-CCV17	68034
7:11	MA20663~CCB18	69250
7:40	MA20663-CR1B4	69118
7:46	MA20663-1CSA4	64612
	MA20663-ICSAB4	
7:59	MA20663-CCV18	67937
	MA20663-CCB19	
8:!1	ZZZZZZ	36936 !
∞ Re	ference for 137	D limits. ! = Outside limits.

Login Number: J85964 Account: EHTXF - Entact Houston Project: Cheuron, Perth Amboy

File ID: IT032708M1.DAT Analyst: ND

Date Analyzed: 03/27/08 Run ID: MA20663

Methods: EPA 200.7, SW846 60105

Parameters: Pb

Sample Time Description Istd#1

 Legend:
 Istd#
 Parameter
 Limits

 1std#1
 Yttrium
 60-125 %

BLANK PESULTS SUMMARY Fart 1 - Initial and Continuing Calibration Blanks

Login Number: 385904 Account: EHTXF - Entact Housion Project: Chevron, Perch Amboy

File ID: IT032708M1.DAT QC Simits: result < RL

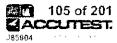
Date Analyzed: 03/27/08 Methods: EFA 200.7, EW846 6010B Run 1D: MAZ0663 Dnits: ug/1

QL Simits: res		Run	1D: MAZ00	563	Dnits: ug/l					
Time: Sample ID: Metal	PL	IDL	11:17 ICB1 raw	r̃ınal	11:30 CC51 raw	final	11:57 CCB2 raw	final	13:19 CCB3 raw	f≨nal
Aluminum	200	26		* *						
Antimony	6.0	5,3								
Arsenic	8.0	4.2	anr							
Barıum	200	.3	anr							
Beryllium	1.0	.2								
tadmium	4.0	. 4	acr							
Caltium	5000	85								
Chromium	10	.9	anr							
Cobalt	50	1.3								
Copper	25	1.3								
iron	100	8.3	anr							
Lead	3,0	2.7	\$.3	₹3,0	-1.0	<3.0	0.98	<3.0	1.5	<500
Magnesium	5000	24	ant							
Manganese	15	. 4	anr							
Molybdeaum	10	2.2								
Nickel	40	1.7	anr							
Palladıum	10	5.8								
Potassium	10000	66								
Selenium	10	3.9	anr							
Silicon	200	6.6								
Silver	10	1.5	anr							
Sodium	5000	480								
Thalliom	10	5	anr							
Tin	20	2.7								
Vanadium	50	1.6								
Zinc	20	4.2	acr							

(*) Outside of QC limits (anr) Enalyte not requested

BLANK RESULTS SUMMARY Part i - Initial and Continuing Calibration Blanks

Login Number: J85904 Actount: EHTXF - Entact Mouston Project: Chevron, Perth Amboy


File ID: IT032708M1,DAT QC Limits: result < RL

Date Analyzed: 03/27/08 Run ID: MA20663

Methods: EPA 200.7, SW846 60108 Unats: ug/l

Time: Sample iD: Metal		IDL	14:42 CCB4 raw	final	16:00 CCB5 raw	final	17:24 CCB6 Jaw	final	18:40 CCB7 Faw	final
Aluminum	200	26								
Antimony	6.0	5.3								
Arsenic	8.0	4.2	anr							
[Sarium	200	.3	anr							
Rezyllium	1.0	. 2								
Cadmium	4.0	. 4	anr							
Calcium	P600	85								
Chromium	10	.9	anr							
Cobalt	50	1,1								
Copper	25	1.3								
Iron	100	8.3	anr							
Lead	3,0	7.7	0.95	<500	1.9	<3.0	0.92	<3.0	2,4	<3.0
Magnesium	5000	24	anı							
Manganese	15	. 4	anr							
Molybdenum	10	1.2								
Nickel	40	1.7	anr							
Palladium	10	5.8								
Potassium	10000	66								
Selenzum	20	3.9	anz							
Silicon	200	ō.6								
Silver	10	1.5	anr							
Sodium	5000	480								
Thallium	10	5	anr							
Tìn	10	2.?								
Vanadium	50	1.6								
Zine	20	4.2	anr							

(*) Outside of QC limits (anr) Analyte nut requested

BLANK RESULTS SUMMARY Part 1 - Initial and Continuing Calibration Blanks

Login Number: J85964 Account: ESTXF - Entart Houston Project: Thevron, Perth Amboy

File ID: 1T032708M%.DAT QC Limits: result < RL

Date Analyzed: 03/27/08 Run ID: MA20663

Methods: EPA 200.7, SW846 60108 Units: ug/l

Time: Sample ID:			19:52 CCB8		21:01 cca9		22:21 CCB10		23:29 CCB11	•
Metal	ΡĻ	ISL	raw	final	raw	final	raw	final	raw	final
Alumanum	200	2 6								
Antimony	6.0	5.3								
Arsenia	8.0	4.2	anr							
Barıum	200	• 3	anı							
Beryllium	1.0	, 2								
Cadmium	4.0	. 4	anr							
Calcium	5000	85								
Chromium	10	, 9	anr							
Cobalt	50	1.1								
Copper	25	1.3								
Iron	100	8.3	anr							
Lead	3.0	2.7	2.0	₹3.0	-:.5	<3.0	0.85	<3.0	3.3	* (a)
Magnesium	5000	24	anr							
Manganese	15	. 4	anr							
14olybdenum	10	1,2								
Ni=kel	4.0	1.7	anr							
Palladium	10	5.8								
Potassium	10000	66								
Selenium	10	3.9	ani							
Silipan	200	6.6								
5ilver	IO	1.5	anr							
Sodium	5000	480								
Thallıum	10	5	anı							
Tin	10	2.7								
Vanadium	50	I.6								
Zinc	20	4.2	anr							

^(*) Outgide of QC limits

⁽amr) Analyte not requested

(a) Within RDL limits for TDLP leachates and soils and less than 3 times the IDL for this element. Only TCLP and soil samples reported for this element in the area bracketed by this CC.

BLANK RESULTS SUMMARY Part 1 - Initial and Continuing Calibration Blanks

Login Number: J85904 Account: ERTXF - Entact Houston Project: Chevron, Perth Amboy

File 10: 17032708M1.DAT QC Limits: result < RL Dane Analyzed: 03/27/08 Run ID: MA20663 Methods: FPA 200.7, SM846 6010B Units: ug/j

D: MA20663 Units: ug/3

Time: Sample ID: Metal	R L	EDL	09:12 CCB1Z raw	final	01:20 CCB13 raw	final	02:30 CCB14 raw	final	53:44 CCB15 raw	fital
Aleminum	200	26								
Antimony	6.0	5.3								
Arsenic	0.8	4.2	anr							
ລິ a rium	200	. 3	anr							
Beryllium	1,0	.7								
Cadmium	4.0	. 4	anr							
Talcium	5000	85								
Chromiam	10	. 9	atır							
Cobalt	50	1.1								
Copper	25	1.3								
Iren	100	8.3	adi							
tlead	3.0	2.7	0.53	<3.0	1.4	<3.0	1.9	<3.0	1.1	<3.0
Magnesium	5000	24	anr							
Mangapese	15	. 4	anr							
Molybdenum	10	1.2								
Nickel	40	1.7	anr							
Pailadium	10	5.8								
Potassium	10000	66								
Selenium	10	3.9	anr							
Silicon	200	6.6								
Silver	10	1.5	anı							
Sodium	5000	480								
Thallium	10	5	anr							
Tin	10	2.7								
Vanadium	56	1.6								
Sand	20	4.2	anr							

(*1 Outside of QE limits (anr) Ahalyte not requested

BLANK RESULTS SUMMARY Part 1 - Initial and Continuing Calibration Blanks

Login Number: 585904 Account: EHTXF - Entact Sousion Project: Chevron, Perth Amboy

File (D: IT032708M1.1mAT QC Limits: result < RL

Date Analyted: 03/27/08

Nethods: EPA 200.7, 5W846 6010b Units: ug/l

Rum ID: MA20663

Time; Sample 19:		A Y	04:46 CCB16		06:00 CCB17		07:11 CCB18		08:D5 CC£19	
Metal	RL	15L	LgM	final	raw	final	raw	final		final
Aluminum	200	26								
Antimony	6.0	5,3								
Alsenic	8.0	4.2	anr							
Bariom	206	.3	anr							
Beryllium	1.0	.2								
Cadmıum	4.0	, 4	anr							
Calcium	5000	85								
Chromium	10	.9	8fir							
Cobalt	50	1.1								
Copper	25	1.3								
Iron	100	8.3	āħſ							
Lead	3.0	2.7	2.5	<3.0	252	* (a)	153	* (a)	1.1	<3.0
Magnesium	5000	24	anr							
Manganese	15	. 4	anr							
Molybdenum	10	1.2								
Nick∈l	40	1,7	anr							
Palladium	10	5.8								
Potasiium	20000	56								
Selenium	10	3,9	anr							
Siliton	200	6.6								
Eilver	10	1,5	anr							
5odium	5000	480								
Thallium	2.0	5.	anr							
Tit	10	2,7								
Vanadzum	54	1.6								
Zinc	20	4,2	anr							

^(*) Outside of QC limits

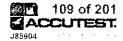
Tann) Analyte not requested

(a) No samples reported for this element in the area bracketed by this QC.

CALSBRATION CHECK STANDARDS SUMMARY Initial and Continuing Calibration Checks

Lögin Number: J85904 Account: BHTXF ~ Entact Houston Project: Chevron, Perth Amboy

File ID: YT032708M1.DAT QC Limits: 95 to 105 % Recovery


fanr) Analyse not requested

Date Analyted: D3/27/08

Run DD: MA20663

MethEds: EPA 200.7, 5W846 6010B Units: ug/2

Time: Sample ID: Metal	ICV True	ll:10 ICVl Results	% Rec	ĭiine CCΛ	11:50 CCV1 Results	% Rec	CCV True	13:12 CCV2 Results	ł Řec
Aluminem	•		•				···	·········	
Antimony									
Arsen;c	anr								
Barium	anı								
Beryllium									
Cadmium	ăr.r								
Calcium									
Chromium	anr								
Cobalt									
Copper									
fron	anz								
Lead	1000	1000	100.0	2000	1980	99.0	2000	2090	104.5
Magnesium	anr								
Manganese	Mnr								
Malybdenum									
Nockel	anr								
Palladium									
Mursesto9									
Selenium	anr								
Silicon									
Silver	a⊓≓								
Sodium									
Thallium	anr								
Tin									
Vanadium									
Zinc	anr								
(*) Outside of	QC lumbt	.5							

CALIBRATION CHECK STANDARDS SUMMARY Initial and Continuing Calibration Checks

Login Number: J85904 Acqount: EHTXF - Entact Houston Project: Chevron, Perth Amboy

File 15: IT032708M1.DAT QC Limits: 95 to 105 % Recovery

Date Analyzed: 03/27/08

Methods: EPA 200.7, SW846 6βj0B Units: ug/l

Run 10: MA20663 Units: ug/1

fime: Sample ID: Metal	CCV True	14:35 CCV3 Results	۹ Rec	CCV True	15:54 CCV4 Results	% Rec	CCV True	17:18 CCV5 Results	ર Rec
Aiumisum							•		
Antimony									
Arsenic	anr								
Barlum	anr								
Beryllium									
Cadmium	anr								
Calcium									
Chrom: um	anr								
Cobalt									
Copper									
Iron	anr								
Lead	2050	2120	106.0	2000	2080	104.0	2000	2090	104.5
Magneszum	anr								
Manganese	anr								
Molybdenum									
Nucke:	anr								
Palladium									
muisassoq									
Selenium	anr								
Silicon									
Silver	anr								
Sodium									
Thallium	anr								
7in									
Vanadium									
Zinc	anr								
(*) Outside of (anr) Analyse									

CALIBRATION CHECK STANDARDS SUMMARY Initia? and Continuing Calibration Checks

togin Number: J85904 Account: EHTXF - Entact Houston Project: Chevron, Perth Amboy

File fD: ST032708Ml.DAT QC Limits: 95 tq 105 % Recovery

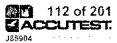
(anr) Analyse not requested

Date Analyzed: 03/27/78 Run 10: MA20663

Methods: EPA 200.7, SW846 6010B Units: ug/l

Time: Sample ID: Metal	CCV Irue	18:33 CCV6 Resulta	% Rec	CCV True	19:46 CCV7 Results	% Rec	CCV True	20:55 CCV8 Results	≒ Rec
Alumi mum				• •			****		
Antimony									
Arsenic	anr								
Barjum	ant								
Beryllium									
Cadmium	anr								
Calcium									
Chromium	anr								
Cobalt									
Copper									
Iron	anr								
Lead	2000	2100	105.0	2000	2090	104.5	2000	2090	304.5
Magnesium	anr								
Manganese	anr								
Molybdenum									
Nickel	ang								
Palladium									
Potassium									
Selenium	anr								
Silicon									
Silver	anr								
Sodium									
ïha≛lıum	anr								
Tin									
Vanadiem									
Zinc	anr								
(*) Outside of	QC limit.	ਬ							

CALIERATION CHECK STANDARDS SUMMARY Instial and Continuing Calibration Checks


Login Number: J85904 Account: BHTXF ~ Entact Houston Project: Chevron, Parth Amboy

File ID: IT032708M1.DAT QC Limits: 95 to 105 % Recovery Date Analyzed: 03/27/08 Run ID: MA28663 Methods: EPA 200.7, SW846 6010B Units: cg/l

Time: Sample ID: CCV 22:14 00:06 23:22 CCV CCV CCV9 CCV) 0 CCV11

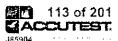
Metal	True	Results	Դ Reç	True	Results	ર Rec	True	Results	% Re¢
Aluminum									
Antimony									
Ardenic	anr								
Barıum	anr								
Beryllıum									
Cadmium	asr								
Çalcıum									
Chromium	anr								
Cobalt									
Copper									
lron	ānr								
Lead	2000	2100	105.0	2000	2070	103.5	2000	2060	103.0
Magnesium	anr								
Manganese	anr								
Molybdanum									
Nickel	anı								
Palladium									
Potașsium									
Selenium	anr								
Silygon									
Sìlver	anı								
Sodium									
Thallium	anr								
Tin									
Vanadıum									
2in¢	anr								
(*) Outside of OC limits									

(*) Outside of QC limits (anr) Abalyte not requested

CALIBRATION CHECK STANDARDS SCMMARY Initial and Fostinuing Calibration Thecks

Logit Number: J85904 Account: EHTXF - Entact Housecn Project: Chevron, Perth Amboy

File ID: IT032708M1.DAT QC Limits: 95 to 105 * Recovery Date Analyged: 03/27/08


Methods: EPA 206.7, SW846 6010B Run ID: MA20863 Units: ug/l

Time: 01:14 02:24 03:38 Sample ID: CCV CCV12 CCV CCV13 CCV CCV14 Metal True Results & Rec True Results % Rec True Results % Rec Aluminum Antimony Arsenic anr Barium an‡ Beryllium Cadmium anr Calcium Chromium anr Cobalt Copper Iron anr 2000 2010 100.5 2000 2 0 340 Lead 100.5 2000 2040 102.0 Magnesium anr Manganese anr Molybdenum Nickel anr Palladium Potassium Selenium Siliton Silver anr Sodlum Thallium anr Tin

(*) Outside of QC limits (anr) Analyte not requested

anr

Vanadium Zinr

CALIBRATION CHECK STANDARDS SUMMARY Initial and Continuing Calibration Checks

Login Number: J85904 Account: EHTXF - Entact Houston Project: Chevron, Perth Amboy

Fyle iD: IT032708Ml.DAT QC Limits: 95 to IOS % Recovery Date Analyzed: 63/27/08 Ron ID: MAZ0663

Methods: EPA 200.7, SW846 8010B

Units: ug/l

Time: Sample ID: Metal	CCV True	04:40 CCV15 Results	Դ Rei	CCV True	Q5:54 CCV16 Regults	1 Rec	CCV True	07;ბ5 ლcVl7 Results	ì Rec
Aluminum									
Antimony									
Agsenit	anr								
Barium	an≓								
B∉ryllium									
Cadmium	aßr								
Calcium									
Chromium	anr								
Cobalt									
Copper									
Iron	anĭ								
Lead	2000	2060	105.0	2000	2090	104.5	2000	2220	111.0*(a
Magnesium	anr								
Manganese	ahr								
Molybdenum									
Nickel	anr								
Palladium									
Potassium									
Selentum	anr								
Silicon									
Silver	anr								
Bodium									
Thallium	anr								
Tin									
Vanadium									
Ziac	anr								

^(*) Outside of QC limits

⁽anr) Analyte not requested

(a) No samples reported for this element in the area bracketed by this QC.

CALIBRATION CRECK STANDARDS SUMMARY Initial and Continuing Calibration Checks

lmgin Number: J85964 Account: EHIXF - Entact Houston Project: Chevros, Perth Amboy

File ID: 1T032708M1.DAT QC Limits: 95 to 105 5 Recovery

(anr) Analyte not requested

Date Amalyzed: 03/27/08 Run ID: MA20663 Methods: EPA 200.7, SW846 6010B Units: ug/1

Time: Sample ID: Metal	CCV True	07:59 CCV18 Pesults	⊁ Res
Alumanum			
Antimony			
Arsenic	anr		
Barıum	âDI		
Beryllium			
Cadmium	anr		
Calcium			
Chromium	arr		
Cobalt			
Copper			
Iron	anr		
Lead	2000	2070	103.5
Magnesium	ānr		
Manganese	anr		
Molybdenum			
Nickel	anr		
Palladium			
Potassium			
Selenzum	arr		
Silicon			
Silver	anr		
Sodium			
Thallium	anr		
Tin			
Vanadium			
Zinc	anı		
(*) Outside of	QC limí	t <i>s</i>	

HIGH STANDARD CHECK SUMMARY

Log:n Number: J65904 Account: EHTXF / Entact Rouston Project: Chevron, Perth Amboy

File ID: IT032708MI.DAT QC Limjts: 95 to 105 i Recovery

(anr) Analyte not requested

Date Analyzed: 03/27/08 Run DD: MA20663

Methods: EPA 200.7, SW846 6010B

Gnics: ug/l

Time: Sample ID: Mecal	HSTD True	10:51 HSTDl R es ults	₹ Reic
Aluminum			
Antimony			
Atsenic	anr		
Barium	anr		
Beryllium			
Cadmium	anr		
Calcium			
Chromium	anr		
Cobalt			
Copper			
Iron	anr		
Lead	4000	3950	98.8
Magneszum	anr		
Manganese	anr		
Molybdenum			
Nickel	anr		
Pal3adium			
Potassjum			
Selenium	anr		
Silicon			
Silver	anr		
Sodium			
Thallium	anr		
Tin			
Vanadium			
Zinc	anr		
(*) Outside of	QC lamit	s	

LOW CALIBRATION CHECK STANDARDS SUMMARY

Logir Number: J85904 Account: EHTXF ~ Entact Houston Project: Chevron, Pgrth Amboy

Fale IQ: IT032708M1.CAT QC Limits: 50 to 150 % Recovery

Date Analyted: 03/27/08 Run ID: MA20663

Methods: EPA 200.7, SW846 60103

Units: og/l

	Time:			11:64				 		 7
Meta.	ample ID; 1	CR2 Irue	CRÇA Trué	CRT A i Results	ኑ Rec					
Alum:	າບກພ						-	 	···	 ز
Ahtir	non y	120	20							
Arser	nıc	20	20							
Bario	ηm	400								
Bery1	llıum	10	2.0							
Cadmi	.um	10								
Çalc.	L∪m									
Chron	nium	20								
Cobal	lt	100								
Cobbe	ÈĽ	50								
Iron										
Lead		6.0	6.0							
Magne	(SIUM									
Manga	riese	30								
Molyb	denum	40								
Nicke	2	80								
Palla	dium	100								
Potas	sium									
Seles	mטנ	10	10							
Silze	on									
S11ve:	r	20								
Sodium	m									
Thall	ìum	20	20							
Tin										
Vanadi	ìum	100								
Sinc		40								

(*) Outside of QC limits (anr) Analyte not requested

INITIAL LOW CALIBRATION CHECK STANDARS SUMMARY

Login Number: J85904 Account: EHTXF - Entact Houston Project: Chevron, Perth Amboy

File ID: IT032708M).DAT QC Limits: 50 to 150 % Recovery

Date Analyzed: 03/27/08 Run ID: MA20663

Methods: EPA 200.7, SW846 601CB

Units: µg/l

Time: Sample ID: Metal	CRIB True	10:58 CR1BI Resules	* Pec	16:59 CRIB2 Results	₹ Rec	23:47 CR1B3 Results	t Rec	07:40 CRIP4 Resuits	§ Rec
Aluminum	460			····				**	
Antimony	12								
Arsenic	16								
Baraum	400								
Beryllium	2.0								
Cadmium	8.0								
Calcium	5000								
Chromium	20								
Cobalt	100								
Copper	50								
lron	200								
Lead	6.0	7.8	130.0(a)	6.3	105.0	8.6	143.3[a)	8.5	I41.7(a)
Magnesium	5000								
Manganese	30								
Molybdenum	40								
Nickel	80								
Palladium	100								
Potassium	10000								
Selenium	20								
Silicon	400								
Silver	20								
Sodium	10000								
Thallium	20								
Tín	20								
Vanadium	100								
2inc	40								

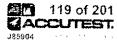
^(*) Outside of QC limits

Tann) Analyte not requested

(a) Ducside of in house limits, but within reasonable method recovery limits.

INTERFERENC ELEMENT CHECK STANDARDS SUMMARY Part 1 - ICSA and ICSAB Standards

Login Number: J85904 Account: EBTXF - Entact Houston Project: Chevron, Perth Amboy


File 1D: IT037708M1.DAT
QC Limits: 80 to 120 % Recovery

Pate Analyzed: 03/25/08 Run ID: MAZ0663

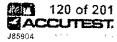
Methods: EPA 100.7, SW846 5010B Units: ug/J

Time: Sample ID: Metal	1CSA True	1GSAE True	11:58 ICSA1 Results	¹ Pec	11:44 1CSAB1 Resulss	₹ Rec	:7:05 105A2 Resulto	₹ Rec	19:12 10SAB2 Results	₹ Res
Aluminum	500000	560600	496000	99,2	484060	96.8	484000	96.8	494060	98.8
Antimony		1000	4.8		1070	107.0	1.7		1260	110.0
Arsenic		2000	5.9		1060	106.0	7.1		1670	10%,0
Barıum		500	1.4		527	105.4	1.0		534	J06.8
Beryllium		500	0.88		530	106.0	0.74		542	100.2
Cadmium		1000	3.5		ĵ020	102.0	3.5		1050	105.0
Calcium	40000Ú	400000	415000	163.8	405000	161.3	410000	102.5	41600Q	104.0
Chromium		500	2.5		513	102.6	1.7		525	105.0
Cobalt		500	5.2		507	101.4	2.3		521	104.2
Copper		500	11.8		521	104.2	11.5		530	106.0
īron	200000	260060	199000	99.5	198000	99.0	J 92000	96.0	199000	99.5
Lead		1000	2.2		1010	101.0	-3,3		1040	104.0
Magnesium	200002	500000	534000	106.8	526000	105.2	51 5000	105.4	531600	106.2
Manganese		500	5.4		522	104.4	5.0		533	106.6
Molybdenum		500	1.4		506	101.2	-1,0		509	101.8
Nickel		1000	0.50		971	99.1	-0.19		993	99.3
Palladium		500	10.3		536	107.2	10.5		<u>5</u> 48	109.6
Potassium			2610		2520		2560		ន្ទ10	
Selenium		1000	0.14		1046	104.0	-5.5		1070	107,0
Sílicon			-:10		-94		-110		-93	
Silver		1050	1.7		1090	109.0	2.ε		1190	120.0
Sodium			-3400		-3600		-3200		-3500	
Thallium		1000	4.3		1010	101.0	û.74		1510	101.0
Tin			-5.Z		-7.9		-6.9		-5.9	
Vanadium		500	-2.6		526	105.2	-1,9		526	105.2
Zinc		1000	-7.5		1020	102.0	-8.1		1040	104.0

(*) Outsade of QC limits (anr) Analyte not requested

1NTERFERING ELEMEN) CHECK STANDARDS SUMMARY Part 1 - 105A and 105AB Standards

Sogin Number: J85904 Account: EHTXF - Entact Houstot Project: Chevron, Perth Amboy


File ID: TT032708ML.DAT QC Lamits: 80 to 120 % Recovery Date Analyred: 03/27/08 Run ID: MA20663

Methods: EPA 200.7, SW846 60109

MA20663 Units: pg/l

								-		
Time: Sample ID: Metal	1CSA Troe	ICSAB True	23:53 ICSA3 Results	% Rec	00:00 ICSAB3 Results	§ Rec	07:46 ICSA4 Results	5 Rec	07:52 ICSAB4 Results	[%] Rec
Aluminum	500000	500000	490000	98.0	489000	97.8	487000	97.4	487000	97.4
Antimony		1000	7.6		1080	108.0	-1.2		1070	107.0
Arsenic		1000	7.3		1060	105.0	6.8		1060	106.0
Barium		500	1.3		529	105.8	1.2		525	105.0
Beryllium		500	0.76		532	106.4	0.72		530	106.6
Cadmium		1000	3.6		1030	153.0	3.6		1030	103.0
Calcium	40000¢	400000	410000	192.5	408000	102.0	406000	101.5	405000	101.3
Chromium		500	2.8		517	103.4	2.3		515	103.0
Cobalt		500	3.3		509	101.8	2.4		505	131.0
Copper		500	:3.7		524	104.8	9.5		521	104,2
lron	200(100	200000	196000	98.0	198000	99.0	196000	98.6	199000	99.5
Lead		1000	Ġ.86		1020	102.0	-1.3		1010	161.0
Magnesium	500000	500000	526000	105.2	527000	105.4	526000	105.2	530000	106.0
Manganese		500	5,2		524	194.8	5.1		521	104.2
Molybdenum		500	1.6		508	101.6	0.14		521	102.2
Nickel		1000	0.22		976	97.6	-0.021		976	97.6
Pailadium		500	11.1		541	108.2	7.0		533	106.6
Potassium			2590		2530		2600		2550	
Selecium		1000	-2.1		2050	105.0	-7.5		1050	105.0
51licon			-130		-93		-120		-97	
Silver		1000	2.2		1090	109.0	î.6		1090	109.0
Sadium			-3300		-3600		-3100		-3700	
Thallium		1000	0.95		1010	101.0	-1.6		1020	102.0
Tin			-5.6		-5.£		-8,8		-5,8	
Vanadium		500	-2.4		527	105.4	-4.0		530	206.0
Zanc		1000	-7.5		1025	102.0	-9.0		0191	101.0

(*) Outside of QC limits (ahr) Analyce not requested

Accutest Laboratories Instrument Runiog lnorganics Analyses

Login Number: J85904 Account: SHTXF - Entact Houston Project: Chevron, Perth Amboy

File XD: 1T033108M1.DAT Analyst: ND Parameters: Pb

Date Analymed: 03/31/08 Run ID: MA20673

Methods: SW846 6(1103

Time	Sample Description	Dilution PS Factor Recov	Commen≒s
10:09	MA20673~STD1	1	STDA
10:16	MA20673~STD2	1	STDB
10:22	MA20673~5TD3	1	STOC
10:28	MA20673~STD4	3	COTE
17:34	MA20673~ST05	1	STDE
10:41	MA20673~STD6	1	STOF
10:47	MA20673~STD7	2	STDG
10:53	MA20673~STD8	1	STDS
11:00	MA20673~STD9	1	STDI
11:17	MA20673~HSTDl	1	
11:29	MA20673~CRIB1	J	
11:35	MA20673~CR1A1	1	
11:41	MA20673~ICV1	3	
11:48	MA20673~10B1	1	
11:54	MA20673~ICCV1	1	
12:01	MA20673~CCB1	<u> 7</u>	
12:10	MA20673~ICSA1	1	
12:17	MA20673~1CSAB1	1	
12:23	322232	5	
12:30	ZZZ232	3	
12:48	ZZ2ZZZ	16	
12:53	J85761~1	1	(sample used for QC only; not part of login J85904)
13:00	223222	1	
13:09	ZZZZZZ	1	
13:16	MA20673~CCV1	1	
13:22	MA20673~CCB2	1	
13:78	222223	1	
13:34	322222	1	
13:40	ZZZZZZ	5	
13:47	232222	2	
14:01	MP42998-M83	Ţ	
14:07	MP42998~LCF	J	
14:13	222222	4.	

Accutest Laboratories Instrument Runlog Inorganics Analyses

Login Number: J85904 Account: EHTXF - Entact Gouston Project: Chevron, Perth Amboy

File 1D: IT033108MI.DAT Analyst: ND Parameters: Pb

Sate Analyzed: 03/31/08

Methods: SM846 60153

			,,
	Run	ID:	MA20673

Time	Sample Description	Digution PS Factor Recov	Comments
14:19	22222	1	
14:25	223222	2	
14:32	272322	1	
14:38	MA20673-CCV2	1	
14:44	MA20673-CCB3	1	
14:50	XZZ2ZZ	1	
14:56	228222	1	
15:01	Z2 ZZZ Z	<u>t</u>	
15:13	J85287-137A	1	(sample used for QC only; not part of login 185904)
15:19	22222	2	
15;25	22222	1	
15:31	22222	<u>z</u>	
15:37	22222	1	
15:49	J85761-1	3	(sample used for QC only; not part of logis 185904)
15:55	MA20673-CCV3	1	
16:02	MA20673-CCB4	1	
16:08	MP43031-MB2	1	
16:14	MP43031-LC1	1	
16:20	ZZZZZZ	1	
16:26	352222	<u>3</u>	
16:32	22222	1	
16:39	MA20673-ICSA2	1	
16:45	MAZ0673-ICSAB2	1	
16:52	MA20673-CCV4	1	
16:58	MAZ0673-CCB5	1	
17:04	222222	1	
17:10	MP43041-S1	3	
17:17	MP43041-S2	3,	
17:23	MP43041-SD1	15	
17:29	ZZZZZZ	î	
17:35	222223	I	
17:41	ZZ2ZZZ	1	
17:47	322222	1	

Accutest Laboratories Instrument Runlog liorganics Analyses

Login Number: J85904 Account: EHTXF - Entact Houston Project: Chavron, Perth Amboy

File ID: IT033108M1.DAT Analyst: RD Date Analyzed: 03/31/08

Methods: 5W846 60:0B

Analyst: RD		Run	1D:	MA2067
Parameters:	Pb			

Time	Sample Description	Bilution PS Factor Reco	v Comments
17:53	MA20673-CCV5	1	
18:00	МА20673-ССВ6	1	
18:09	J859G4~1A	1	2CV out
18:15	J8590 4-2 A	1	CCV cut
18:21	MP43030~MB1	í	CCV out
18:27	MP43030~Bl	1	COV but
18:33	MP43030-51	1	CCV our
18:39	MP43030~S2	1	CCV out
18:46	J85287-16A	1	(sample used for QC only; not part of login J85904)
18:52	MP43030~S81	5	CCV out
18:58	232222	5	
19:04	522528	10	
14:10	MA20673-CCV6	ī	
19:16	MA20673-CCB7	1	
19:25	MA20673-GCV7	1	
19:31	MA20673-CCB8	1	
19:37	32222	10	
19:43	223222	10	
19:50	232222	10	
20:02	225222	10	
20:08	232252	10	
20:14	222222	10	
20:20	225222	10	
20:26	22222	10	
20:32	252222	10	
20:39	522222	3 0	
20:45	MA20673-CCV8	1	
20:51	MA20673-CCB9	2	
20:57	22222	10	
21:03	28 2 ā 2 2	3.0	
21:10	522222	10	
21:19	MP43058-MB1	I	
21:25	MP43058-B1	1	

Addutest Laboratories Instrument Runlog Inorganids Analyses

Login Number: J85904 Addopnt: EHTXF - Entact Houston Project: Chevich, Perth Amboy

File 1D: IT033198M1.DAT Analyst: ND Parameters: Pb

Date Analyzed: 03/31/08

Methods: 3W846 6010B

~							
Run	ID:	MA2	O	6	3	7	

Time	Sample Desiription	Dilution P3 Factor Recov	Commense
21:31	MP43058-S1	1	tgol Bigh RSD for Ag
21:37	MP43058-32	1	%sol High RSD for Ag
Z1;44	J86983-2	1	(tample used for QT only; not part of login J85904)
21:50	MP43058-301	5	%sol
<i>2</i> 1:56	ZZZZZZ	1	
22:02	MA20673-CCV9	1	
22:08	MAZ0673-CC\$10	ī	
22:15	22222	1	
22:21	ZZZZZZ	1	
22:27	ZZZZZZ	ĭ	
Z2:33	ZZZZZZ	1	
22:39	22222	ž	
22:45	22222Z	1	
23:52	ZZZZ2 <i>Z</i>	1	
22:58	ZZ2ZZZ	\$	
23:04	322222	1	
23:10	MA20673-1CV10	1	
23:16	MA20673-CCB11	Ţ	
Z3:23	MA20673-105A3	1	
23:29	MA20673-103AB3	1	
23:35	MA20673-CCV11	1	
23:42	MA20673-CCB12	1	
23:48	22222	1	
23:54	22222	1	
00:90	277222	1	
00:06	777777	1	
00:13	Z22ZZZ	1	
00:19	ZZZZZZ	ı	
00: <i>2</i> 5	ZZ2%ZZ	1	
00:31	222222	1	
00:37	22222	1	
06:43	MAZ0673-CIV12	1	
GO:50	MA20673-CCB13	1	

Accutest Laboratoxies Instrument Runlog Inoxganics Analyses

Login Number: J85964 Account: EHTXF - Entate Houston Project: Chevron, Perth Ambay

File 1D: IT033108M3.DAT Analysc: ND

0ace Amalyzed: 03/31/08 Run lD: MA20673

Methcas: 5W846 6010%

Analysc: ND Parameters: Pb

------->

Time	Sample Description	Dilution Factor	PS Recay	Солиments
00:56	J8590 4 -1A	1		
last r	J95904-2A eportable sample MP43030-MB1	; /prep for l	ებბ J359(Saturaced 04
01:14	MP43030-B1	7		
01:21	MP43030~\$1	1		
01:27	MP43030-52	1		
01:33	J85287-16A	1		(sample used for QC only; not part of login J85904)
03:39	MP43030~5D1	5		
01:45	22222	5		
01:51	22222	10		
01:57	MAZ0673-CCV13	1		
02:04	MA20673-CCB14	1		
02:10	MA20673-10SA4	1		
02:16	MA20673-10SAB4	1		
02;23	MA20673-ECV14	1		
hast re	MA20673-CCB15 epoxtable CCB for to Yaw data fot (i r job 3859 salibratio	04 n curve a	nd standards.

Page 5

INTERNAL STANDARD SUMMARY

Login Number: 185904 Account: EMTXF - Entact Houston Projett: Chevron, Perth Amboy

File 10: IT033108M1.DAT Analyst: ND Parameters: Pb

Date Analyzed: 03/31/08 Run ID: MA20673

Methods: 5W846 6010B

	Gamela	
Time	Sample Description	Istd#1
10:09	MA20673-STI/1	70028 R
10:16	MA25673-ST02	69870
10:22	MAŻ0673-STD3	70435
10:28	MA20673-SID4	69777
10:34	MA20673-STDS	69823
10:41	MA20573-5TD6	68812
10:47	MA20673-STD7	68200
10:53	MA20673-STD8	67411
11:00	MA20673-STD9	67256
11:17	MA20673-HSTD1	57688
11:29	MA20672-CRIB1	69184
11:35	MAZ0673-CRIA1	69372
11:41	MA20673-ICV3	68767
11:48	MA20673~JCB1	69127
11:54	MAZ0673~ICCV1	
	MAZO673-CCB1	6920/3
	MA20673-ICSA1	64529
	MA20673-ICSAB1	
		68416
		71324
	223232	69460
	J85761-1	71569
	32232%	70758
	ZZZZZZ	70028
	MA20673-CCV2	68939
	MA20675~CCB2	69809
		72696
		70281
		68156
	222222	
	MP42998-MB3	
	MP42998-MB3	
T4:12	66696A	66842

ENTERNAL STANDARD SUMMARY

Login Number: J85904 Account: EHTXF - Entact Houston Frsject: Chevron, Perth Amboy

File 1D: 1T033108M1.DAT Analyst: NL Paramecete: Pb

Date Analyzed: 03/31/08 Run lD: MA20673

Methods: SW846 6010E

Time	Sample Descr:ption	fstd∳l
14:19	22222	66465
14:25	222222	66178
24:32	ZZZ212	64972
14:38	MA20673-CCV2	66676
14:44	MA20673-CCB3	67819
14:50	32222%	65836
14:56	ZZ2ZZZ	£5426
15:01	ZZZZZ2	66029
15:13	J85287-137A	64685
15:19	222222	65378
15:25	3323%2	65375
15:31	232222	£567 <u>9</u>
15:37	22222	65785
25:49	J85761-1	68044
15:55	MA20673-00V3	66480
36:02	MA20673-CCB4	68423
16:08	MP43031-MB2	66350
16:14	MP43031-1,C1	67584
16:20	222232	67109
16:26	ZZZZZ2	67307
16:32	222223	71314
16;39	MA20673-1CSAZ	65150
16:45	MA20673-IESAB2	65909
16:52	MA20673-5CV4	70343
16:58	MA20673-CCB5	72367
17:04	22222	70806
17:10	MP43041-SJ	71663
17:17	MP43041-92	71817
17:23	MP43041-SD1	71753
77:29	222233	100095 !
17:35	ZZZZZZ	69976
17:42	22222	70326
17:47	222732	72076

INTERNAT STANDARD SUMMARY

Login Number: J85904 Actount: EHTXF - Entact Houston Project: Chevron, Perth Amboy

File ID: IT033108M1.EAT Analyst: ND Parameters: Pb

Date Analyzed: 03/31/08 Run ID: MA20673

Methods: 5W846 6010B

Time	Sample Description	[std#]
17:53	MA20673-CCV5	
18:00	MA20673-CCB6	72297
J8:ûº	385904~1A	7159Z
18:25	J85904~2A	71177
18:23	MP43630-MR1	72943
18:27	MP43030~B1	75660
18:33	MP43030~S1	74130
18:39	MP43030~SZ	73598
18:46	J85Z87~16A	73267
18:5z	MP43030~SD2	73206
18:58	223223	99906 :
19:04	222222	70971
19:10	MA20673-CCV6	70936
19:16	MA20673-CCB7	72797
19:25	MA20673-CCV7	70191
19:31	MAZ0673-CCB8	71547
19:37	322322	69915
19:43	222222	70176
19:50	322332	20090
20:02	222232	703Z3
20:08	222222	70337
20:14	222832	70218
20:20	222222	70192
20:26	22222	69119
Z0:32	ZZZZZZ	70618
20:39	222222	70600
20:45	MA30673-CCV8	70413
20:51	MAZ0673-CC99	71237
20:57	232222	70118
21:03	322222	69680
21:10	222232	7009Z
21:19	MP43058-MB1	72336
21:25	MP43058~B1	70445

INTERNAL STANDARD SUMMARY

Login Number: J85904 Account: ERTXF - Entact Houston Project: Chevron, Perth Amboy

File ID: 17033108M1.DAT Acalyst: ND Parameters: Pb Date Analyted: 03/31/08 Run ID: MA20673

Methods: SW846 6010B

	Sample	
Time		letd#3
	MP43058-53	75453
21:37	MP43058-32	75999
21:44	J86983+2	76340
21:50	MP43058-9D1	71958
21:56	ZZZZZZ	74900
22:02	MA20673-CCV9	69665
22:08	MAZ0673-CCB10	71137
22:15	223222	78290
22:21	ZZZZZZ	75184
22:27	72222	77501
22:33	228222	74191
22:39	222222	76322
22:45	22222	72957
22:52	22222	80891
22:58	222222	73409
23:04	22222	74700
23:10	MA20673-CCV10	69746
23:16	MA20673-CCB11	71299
23:23	MA20673~103A3	66580
23:29	MA20673-fCSAB3	66807
23:35	MA20673-CCV11	70073
23:42	MA20673-CCB12	71407
23:48	Z2Z2ZZ	75927
23:54	ZZZZZZ	73823
00:00	ZZZZZZ	74557
00:06	221222	75492
00:13	ZZZZZZ	78073
00:19	ZZZZ2Z	76259
00:25	222222	76804
00:31	222722	73020
00:37	252552	76551
	MA20673-CCV12	
00:50	MA20673~CCB13	71402

INTERNAL STANDARD SUMMARY

Login Number: J85904 Account: EHTXF - Entact Houston Project: Chevron, Perth Amboy

File ID: TT033108M2.DAT Analyst: ND Parameters: Pb

Date Analyzed: 03/31/08 Run 13: MA26673

Methods: SW846 6010B

Time	Sample Sessription	ĭstd # l	
0D:56	J85904-18	67430	
01:02	J85904-2A	68813	
01:08	MP43030-MB1	72089	
01:14	MP43030-B1	72188	
01:21	MP43030-S1	70731	
01:27	MP43030~\$2	70862	
01:33	J85287~16A	70871	
01:39	MP43030~SD1	76104	
01:45	22227	68519	
0;51	ZZZZZZ	68528	
01:57	MA20673-CCV13	68183	
02:04	MA20673-CCB14	69628	
02:10	MAZ0673-ICSA4	65285	
02:16	MA20673~1CSAB4	65309	
02;23	MA20673-CCV14	68981	
02:29	MAZ0673-CCB15	70097	
R - Re	ference for IST	limpts. ! = Outside dimits.	
LEGEND	:		

BLANK FESULTS SUMMARY Part 3 > Isitial and Continuing Calibration Blanks

Login Number: J85904 Account: EHTXF - Entact Houston Project: Chevron, Ferth Amboy

File JD: 1T033108M1.DAT QC Limits: result < RL

Date Analyted: 03/31/08 Run IB: MA20673

Methods: SW846 6010B Units: ug/l

Time Sample {{ Metai		15L	11:48 1CB1 raw	final	12:01 CC91 raw	final	13:22 CCBZ raw	final	14:44 CCB3	final
Alumon mom	200	26	···							Timai
Antimony	26	5.3								
Arsenic	20	4.2	anr							
Barium	209	. 3	anr							
Beryllium	5.11	.3	anr							
Cadmium	5.0	. 4	anr							
Calcium	5000	85								
Chromium	10	.9	asr							
Cobait	50	1.1								
Copper	25	1,3	IKĀ							
Iron	100	9.3								
Lead	20	2.7	-I.5	<20	1.5	<20	-1.2	<20	0.51	<20
Magnesium	5000	24	ane							
Manganese	15	. 4	anı							
Moĭybderom	20	1.2								
Nickel	40	1.7	anr							
Palladium	50	5.8								
Potassium	10000	66								
Selenium	20	3.9	änr							
Silicon	200	6.6								
Sílver	10	1.5	anr							
Sodium	10000	480								
Thallium	10	5	anr							
Tin	50	2.7								
Vanadium	50	2.6	anr							
Zint	20	4.2	anr							
(*) Outerde o	of OC lamb									

(*) Outside of QC limits (anr) Analyte not requested

BLANK RESULTS SUMMAPY Part L - Initial and Continuing Calibration Blanks

Login Rumber: J85904 Account: EHTXF - Entact Houston Project: Chevson, Perth Ambry

File 1D: 1T033108M1.DAT QC Limits: result < RL

Date Analyzed: 03/31/08 Run tD: MA.20613

Methods: SW846 6010B Un∠ts: ug/1

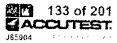
Altuminum 200 26 Ahtimony 20 5.3 and Arsenic 20 4.2 and Berjilium 5.0 .2 and Calcium 5000 86 Chromium 10 .9 and Cobalt 50 1.1 and Copper 25 1.3 and Lead 20 2.7 2.3 <20 -1.9 <20 -2.2 <20 20.1 * Magnesium Magnesium 500 24 and Magnesium 20 1.2 Nickel 40 1.7 and Paliadium 50 5.8 Potassium 1000 66 Selenium 20 3.9 and Sodium 1000 480 Thallium 20 5 5 and	Time: Sample 1D: Metal		1DL	16:02 CCB4 raw	final	16:58 CCB5 raw	final	18:00 CCB6	£1	19:36 CCB7	
Antimony 20 8.3 and Arsenic 20 4.2 and Arsenic 20 3.3 and 30 30 30 30 30 30 30 30 30 30 30 30 30	Aluminum		·				15110 %	10#	1 Mai	E#W	Iinal
Arsenic 20 4.2 and Service Ser	Abt.imohy			ale							
Berylium 5.0 .3 and Serylium 5.0 .2 and Serylium 5.0 .4 and Seryli	Arsenic	20									
Beryllium 5.0 .2 ann Cadmium 5.0 .4 anr Calcium 5000 85 <td< td=""><td>Batium</td><td>206</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Batium	206									
Calcium 5000 85 Chromium 10 9 anr Cobalt 50 1.1 anr Copper 25 1.3 anr Tron 100 8.3 Lead 20 2.7 2.9 x20 -1.9 x20 -2.2 x20 20.1 * lay Magnesium 5000 24 anr Manganese 15 .4 anr Molybdenum 20 1.2 Rickel 40 1.7 ahr Palladium 50 5.8 Potassium 200 3.9 anr Siljcon 200 6.6 Selenium 20 3.9 anr Siljcon 200 6.6 Silver 10 1.5 anr Sodium 10000 480 Thallium 20 5 8.0 anr	Beryllium	5,0	. 2								
Chromium 10 9 anr Cobalt 50 1.1 anr Copper 25 1.5 anr Copper 26 1.5 Copper 26 1.5 Copper 27 1.5 Copper 27 1.5 Copper 28 1.5 Copper 29 1.5 Co	Cadmium	5.0	. 4	anr							
Cobalt 50 1.1 and Copper 25 1.3 copper 25 2.3 copper	Caltium	5000	85								
Copper 25 1.3 anr tron 100 8.3 Lead 20 2.7 2.3 <20 -1.9 <20 -2.2 <20 20.1 * lai Magnesium 5000 24 anr Manganese 15 .4 anr Molybdenum 20 1.2 Nickel 40 1.7 ahr Palladium 50 5.8 Potassium 10000 66 Selenium 20 3.9 anr Silicon 200 6.6 Silver 10 1.5 anr Sodum 10000 480 Thallium 20 5 anr	Chromium	10	.9	anr							
Tron 100 8.3 Lead 20 2.7 2.3 <20 -1.6 <20 -2.2 <20 20.1 * Major Magnesium 5000 24 anr <	Cobalt	50	1.1	anr							
Lead 20 2.7	Copper	25	7.3	anr							
Magnesium 5000 24 anr Manganese 15 .4 anr Mslybdenum 20 1.2 Nickel 40 1.7 ahr Palladium 50 5.8 Potassium 10000 66 Selenium 20 3.9 anr Silicon 200 6.6 Silver 10 1.5 anr Sodum 10000 480 Thallium 20 5 anr	tron	100	8.3								
Magnesium 5000 24 anr Manganese 15 .4 anr Mslybdenum 20 1.2 Nickel 40 1.7 ahr Palladium 50 5.8 Potassium 10000 66 Selenium 20 3.9 anr Silver 10 1.5 anr Sodaum 10000 480 Thallium 20 5 anr	Lead	20	2.7	2.3	<20	-l.o	<20	-2.2	<20	26.1	* lai
M51ybdenum 20 1.2 Nickel 40 2.7 ahr Palladium 50 5.8 Potassium 10000 66 Selenium 20 3.9 anr Silicon 200 6.6 Silver 10 1.5 anr Sodzum 10000 480 Thallium 20 5 anr	Magnesium	E000	24	anr						2912	74)
Nickel 40 1.7 ahr Palladium 50 5.8 Potassium 10000 66 Selenium 20 3.9 anr Silicon 200 6.6 Silver 10 1.5 anr Sodium 10000 480 Thallium 20 5 anr	Manganese	15	. 4	anr							
Palladium 50 5.8 Potassium 10000 66 Selenium 20 3.9 anr Silicon 200 6.6 Silver 10 1.5 anr Sodrum 10000 480 Thallium 20 5 anr	Molybdenum	20	1.2								
Potassium 10000 66 Selenium 20 3.9 anr Silicon 200 6.6 Silver 10 1.5 anr Sodrum 10000 480 Thallium 20 5 anr	Nickel	40	1.7	ahr							
Selenium 20 3.9 anr Siljcon 200 6.6 Silver 10 1.5 anr Sodrum 10000 480 Thallium 20 5 anr	Palladium	50	5.8								
Siljcon 200 6.6 Silver 10 1.5 anr Sodrum 10000 480 Thallium 20 5 anr	Potassium	10000	66								
Silver 10 1.5 amr Sodium 10000 480 Thallium 20 5 amr	Selenium	20	3.9	anr							
Sodzum 10000 480 Thallium IO 5 and	Silicon	200	6.6								
Thallium 20 5 anz	Silver	10	1.5	anır							
	Sodzum	10000	4 80								
Tin 50 2.7	Thallium	20	5	ant							
	Tin	50	2.7								
Vanadium 50 ≥.€ anr	Vanadium	50	2.€	anr							
Zinc 20 4.2 anr	21nc	20	4.2	anr							

^(*) Uniside of QC limits

 ⁽anr) Analyte not requested
 (a) Within RDL limits for TCLP leadhates. Only TCLP samples reported for this element in the area bracketed by this QC.

$\label{eq:bank_results} \mbox{ BLANK RESULTS SUMMARY}$ Part 1 - Initial and Continuing Calibration Blanks

Login Number: J85904 Account: BHTXF - Entact Houston Project: Chevron, Perch Amboy


Fale ID: IT053108M3.DAT QC Lamits: resuir < RL

Date Analyzed: 03/31/08 Run ID: MAZ0673 Methods: SW846 5010B

Units: ug/l

Time Sample JD Metal		IDL	19:31 CCB8 raw	final	20:51 CCB9 raw	final	22:08 CCB10 raw	final	23:16 CCB11 FAW	fimal	
Alumrnum	246	26			·						
Antimony	20	5.3	an <i>r</i>								
Arsenic	20	4.2	anr								
Barıum	200	, 3	anr								
Beryllium	5.0	. 2	anr								
Čadimıum	5.0	. 4	anr								
Calcium	5900	85									
Chromium	10	. 9	anr								
Cobalt	50	1.1	anr								
Copper	25	3.3	anr								
Iron	100	8.3									
Lead	20	2.7	1.3	<20	0.091	<20	-0.80	<20	-0.13	<20	
Magnesium	5000	24	anı								
Manganese	15	. 4	anr								
Molybdenum	20	2.2									
Nickel	40	1.7	anr								
Palladium	50	5.8									
Porassium	20000	6€									
Selenium	20	3.9	anr								
Silison	200	6.6									
Silver	10	1.5	anr								
Sodium	10000	480									
Thallzum	10	5	anr								
Tin	50	2.7									
Vanadium	50	1.6	anr								
Sinc	20	4.2	ant								

(*) Obtaide of QC limits (ann) Analyte not requested

BLANK RESULTS SUMMARY Part 1 \sim lastcal and Continuing Calibration Blanks

Login Number: J85904 Account: EHTXF ~ Entact Houston Project: Chevron, Perth Amboy

File ID: IT033108M1.DAT QC Limits: result < RL

Date Analyzed: 03/31/08 Run 1D: MA20671

Methods: 90846 6010B Units: ug/l

Time: Sample ID: Metai		IDL.	73:42 CCB12 raw	final	00:50 CCB13 raw	final	02:54 CC814		02:29 CCB15	
Aiuminam	Ž00	26		101	- 44		Iå₩ 	final	I à W	final ————————————————————————————————————
Antimony	20	5.3	ang							
Arsenic	20	4.2	anr							
Barium	200	. 3	anr							
Beryllıum	5.0	.7	anr							
Cadmzum	5.0	. 4	acr							
Caltium	5000	85								
Chromium	10	. 9	anr							
Cobalt	50	1.1	anr							
Capper	25	1.3	Ang							
lron	100	ā.3								
lead	20	2,7	-1j.73	<20	3.5	<20	22.0	* (a)	2.5	<20
Magnesium	5000	24	anr							
Manganese	35	. 4	anr							
Molybdenum	20	1.2								
Nickel	4 Ú	1.7	amr							
Palladium	50	5.8								
Potassium	10000	66								
Selenium	20	3.9	anr							
Silicon	500	6.6								
\$ilver	20	1.5	anr							
Sodium	10000	480								
Thalliam	10	5	anr							
Tic	50	2.7								
Vanadıum	50	1.6	anı							
Zino	20	4.2	on:							

^(*) Outside of QĆ limits

⁽anr) Analyte not requested

(a) Within RDL limits for TCLP leachates, Only TCLP samples reported for this element in the area bracketed by this QC.

CALIBRATION CHECK STANDARDS SUMMARY Instial and Continuing Calibration Checks

Lagan Number: J85904 Account: EHTXF - Entact Heuston Project: Chevron, Perth Amboy

File ID: 1T033108M1.DAT QC Limits: 90 to 110 % Recovery

Date Analyzed: 03/31/08

Pun 10: MA20673

Methods: SW846 6016B Units: ug/I

Time: Sample II7: Metal	ECV True	ll:41 ICVl Results	9 Rec	CCV True	13:16 CCV1 Results % Rec	CCV True	14:38 OCVZ Results	t Rec	
Z l um i num				*****					

	1100	CEPUITS	7 Kec	irue	Kesnits	% R⊕c	True	Results	t Rec	
Alumınum			·							
Antimony										
Arsenic	371 T									
Barium	arı=									
Beryilıum	anr									
Cadmium	anr									
Calgium										
Chromium	anr									
Cobalt										
Copper	anr									
lron										
Lead	1000	1050	105.0	2000	2000	100.0	2000	2040	102.0	
Magnesium	anr									
Manganese	_ anr									
Molybdenum										
Nickel	anr									
Palladıum										
Potassium										
Selenium	anr									
Silicon										
Silver	ānī									
Sodium										
Thallium	anr									
Tín										
Vanadium	anr									
Zanc	anr									

(*) Outside of QC limits (anr) Analyte not requested

CALIBRATION CHECK STANDARDS SUMMARY Initial and Continuing Calibration Checks

Logis Number: J85904 Account: EHTXF ~ Entact Houston Project: Chevron, Perth Amboy

File ID: IT033108M1.DAT QC Limits: 90 to 110 % Recovery

2180

anz

(*) Outside of QC limits (anr) Analyte not requested

Date Analyzed: 03/31/08 Run ID: MA20673

Methods: SW846 6010B Units: ug/l

							****	49/1		
Time Sample IS Metal	: CCV True	15:55 CCV3 Results	% Rẹc	CCA Zine	16:52 SCV4 Results	ે Pec	CCV True	17:53 CCV5 Results	ት Rec	
Alumınum						7				
Antimony	anr									
Arsetic	Anr									
Barium	anr									
Berylljum	anr									
Cadmium	anr									
Calcium										
Chromlum	anr									
Cobalt	anr									
Copper	anr									
fron										
Lead	2000	2010	100.5	2000	1680	94.0	2000	1836	91.5	
Magnesium	anr									
Manganese	ēnr									
Molybdenum										
Nickel	anr									
Palladıum										
Potassium										
Selenium	anr									
Silicon										
Silver	anr									
5odium										
Thallium	anr									
Tin										
Vanadium	anr									
Fr										

CALIBRATION CHECK STANDARDS SUMMARY Initial and Continuing Calibration Checks

Login Number: J85904 Account: EHTXF - Entact Houston Project: Chevron, Perth Amboy

File TD: 1T033108M).DAT QC Limits: 90 to 110 % Recovery Sate Analyted: 03/31/08 Run ID: MA20673

Methods: 3W846 6GluB Units: eg/l

Metal True Results Rec True Results Res True Results Res
--

Aluminam										
Antimony	ans									
Arsenic	anr									
Baciem	anr									
Seryllium	ānr									
Cadmium	anr									
Calcium										
Chromium	anr									
Cabalt	anı									
Copper	anr									
ž cou										
Lead	2900	1790	89.5*(a) 20	900	1540	92.0	2500	1890	94.5	
Magnesium	sur									
Manganese	anr									
MolyEdenum										
Nickel	anr									
Palladium										
Potassium										
5eleaium	anr									
Silicon										
Sílver	anr									
Sodium										
Thallium	ans									
Tan										
Vanadíum	anr									
Zin∈	ans									

^(*) Outside of QC limits (anr) Analyte not requested

⁽a) No samples reported for this element in the area bracketed by this QC.

CALIBRATION CHECK STANDARDS SUMMARY Initial and Continuing Calibration Checks

Login Number: J85904 Account: EBTXP ~ Enters Houston Project: Chevron, Perth Amboy

Fale 10: IT033108M1.DAT QC Limits: 90 to 110 % Recovery

Date Analyzed: 03/31/08 Run ID: MA20673

Methods: \$W846 6016B Units: ug/l

Time: 22:62 23:10 23:35

Sample ID: CCV CCV9 CCV CCV10 CCV CCV11

Metal True Results & Rec | True Results & Rec True Results & Rec

Metal	True	Results	t Rec	True	Results	° Rec	CCV Trae	CCVII Results	4 Rec
Aluminum								···	
Antimony	anr								
Arsenat	anr								
Barium	anı.								
Beryllium	31:16								
Cadmium	anr								
Calczum									
Chromium	anr								
Cobalt	ans								
Copper	asr								
Fren									
Lead	2000	1930	96.5	2500	1920	96.D	2000	1900	95.0
Magnesium	anr								
Manganese	anr								
Molybdenum									
Nitkel	anr								
Palladjum									
Potassium									
Selenium	anr								
5álicon									
Silver	anr								
Sadíum									
Thall≥um	anr								
Tin									
Vanadium	anr								
Sipo	anr								

(*) Outside of QC limite (ans) Analyte not requested

CALIBRATION CHECK STANDARDS SUMMARY init.al and Continuing Calibration Checks

Login Number: J85904 Account: EBTXF - Entact Houston Project: Chevron, Perch Amboy

File ID: IT0331H8M1.DAT QC Limits: 90 to Il0 % Recovery Date Analyzed: 05/51/08 Run JD: MA20673

Methods: SW846 6010B Units: ug/l

Time: Sample ID: Metal		00:43 CCV1Z Results	1 Rec	CCV True	01:57 CCV13 Results	ŧ Rec	⊆CV True	02:23 CCV14 Results	t Rec
Aluminum	,,,,,,			·					
Antimony	anr								
Arsenic	anr								
Barium	ang								
Beryllium	anr								
Cadmium	anr								
Calcium									
Chromzum	ans								
Cobalt	ang								
Copper	anr								
Iron									
Lead	2000	1520	96.0	2000	1970	96.0	2000	1900	95.0
Magnesium	ang								
Manganese	anr								
Molybdenum									
Rickel	anr								
Palladium									
Potassium									
Selenium	anr								
Silacon									
Silver	ans								
Sodium									
Thallium	anr								
Tin									
Vanadium	ang								
Zinc	anr								
(*) Ourside of (anr) Analyte									

HIGH STANDARD CHECK SUMMARY

Logan Number: J85904 Account: EHTXE - Entact Houston Project: Chevron, Perch Amboy

File JD: IT033108M1.DAT QC Limits: 95 to 105 % Recovery Date Analyzed: 03/31/08 Run ID: MA20673

Metnods: SW846 6010B Units: ug/i

Time: Sample 1D: Metal		11:17 MSTD3 Results	% Rec			
luminum	··· · · · · · · · · · · · · · · · · ·	 -		 	 	
Antimony						
Afsenic	anr					
Barium	anr					
Reryllium	anr					
Cadmium	anr					
alçium						
hremium	anr					
obalt						
opper	anr					
roh						
ead	4000	4000	100.0			
agnesium	anr					
anganese	anr					
olybdenum						
ickel	ans					
siladıum						
otassium						
elenium	anr					
iligon						
lver	anr					
odium						
allium	anr					
.n						
madium	anr					
nc	anr					

LOW CALIBRATION CHECK STANDARDS SUMMAPY

Login Number: J85904 Account: EMTXF - Entact Houston Project: Chevron, Perth Ambey

File 15: \$T033108M1.DAT
QC Limits: 50 to 150 % Pecovery

Date Analyzed: 03/31/08 Run JD: MA20673

Methods: SN846 6010B Опать: уд/1

Γ					 	0.12.00	• 29/-		
Time: Sample 1D: Metal	CR1 True	CRIA Tyue	11:35 CR1A1 Results	€ Rec				 	
Aluminum			· · · · · · · · · · · · · · · · · · ·		 			 	
Antimony	120	16							
Arsenic	20	25							
Barium	100								
Beryllıcm	10	2.0	ang						
Cadmı, um	10								
Calcium									
Chromium	20								
Cobalt	001								
Copper	50								
Iron									
Lead	6.0	6.0							
Magnesium									
Manganese	30								
Molybdenum	40								
Nickel	80								
Palladium	100								
Potassium									
Selenium	20	10							
Silicon									
Silver	20								
Sodium									
Thallium	20	20							
Tìn									
Vanadium	200								
Zínc	40								

(*) Outside of QC limits (anr) Analyte not requested

INITIAL LOW CALIBRATION CHECK STANDARD SUMMARY

Login Number: J85904 Account: EHTXF - Entact Houseon Project: Chevron, Perth Amboy

File ID: IT03310BM1.DAT QC Limits: 50 to (50 % Recovery

Date Analyzed: Run 1D:	03/31/08 MA20673	Methods: Units:	601GB

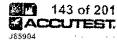
Time: Sample 1D: Metal		ll:19 CRIB? Results	\$ Rec
Aluminum	400	****	
Antimony	12		
Arsenic	16		
Barium	400		
Beryllium	2.0		
Cadmium	B.0		
Calcium	5000		
Chromium	20		
Cobalt	100		
Copper	50		
Iron	200		
Lead	6.0	ნ.3	105.0
Magnesium	5000		
Manganese	30		
Molybdenum	40		
Nátkel	80		
Palladium	100		
Potassium	10000		
Selenium	20		
Sílicon	400		
Silver	20		
Sodium	10000		
Thallium	20		
Tin	20		
Vanadıum	100		
2ifc	40		
(*) Outside of	OC limit	5	

(*) Outside of QC limits (anr) Analyze not requested

INTERFERING ENGINEER CHECK STANDARDS SUMMARY Part 1 - ICSA and ICSAB Standards

hogin Number: J85904 Account: ESTXF - Entact Houseen Project: Chevcon, Perth Ambay

File ID: 1T033;08M1.DAT QC Limits: 80 to 120 ? Recovery


Date Analyzad: 03/31/08 Run ID: MA20*F*73

Methods: SW846 6010B

MA20*F*73 Units: ag/l

r		·							,· -		
Sampl 14ecal	Time: e 10:	ICSA True	ICSAB Troe	12:10 10SA3 Results	¥ Rec	22:17 10SAB1 Pesults	₹ Rec	16:79 1CSAZ Resulta	º Rec	16:45 10SAA? Results	¹ Rec
Alumınun	n	500000	500000	482000	96.2	473000	94.6	473000	94.€	466000	93.2
Antimony			1600	6.2		1040	104.0	0.E2		398	99.5
Arsenic			1000	2.2		1020	102.0	7.8		999	99.9
Barsum			500	0.99		527	105.4	1.1		522	1û4,4
Beryllio	m		500	0.80		526	105.2	0.73		505	101,0
Cadmism			1000	3.5		1020	102.0	3.0		976	97.6
Calcium		400000	400000	398000	99.5	390000	97.5	384000	96.0	376000	94.0
Chromlum			500	1.9		515	103.0	1.6		507	101,4
Cobalt			500	±,7		50α	0.001	2.2		479	95.6
Copper			500	9.3		522	104.4	10.2		520	104.0
Iron		200900	200000	195000	97.5	195000	97.5	194000	97.6	195000	97.5
Lead			1000	-5.0		1000	100.0	-2.2		956	95.6
Magnesiu	n	500000	500000	520000	104.0	525000	103.0	511500	102.2	539000	101.8
Manganes	e		500	5,0		519	103.8	4.9		504	190.8
Molybden	τw		500	1.7		512	102.4	0.12		510	102.0
Nickel			1000	-0.25		912	97. 2	-0.84		952	95.2
Palladium	a.		500	10.2		537	107.4	7.3		52 <i>Z</i>	304.4
Potassium	n			2480		2340		2270		2160	~~,
Selenium			1000	-0.53		1030	103.0	2.5		993	49.3
Siliton				-100		-82		-110		-88	
Silver			1000	0.83		1070	107.0	0.20		1050	105.0
Sodium				-230		-460		118		-9.9	
Thallium			1000	2.6		1010	101.0	1.3		1030	103.0
Tin				-2.5		-2.6		-4.9		÷2.1	103.0
Vanadium			500	-1.8		503	100.6	- 2. 3		508	202.6
žint			1050	-7.4		1004	100,0	÷7,4		935	93,5

(*) Outside of QC limits (anr) Analyte not requested

INTERFEPING BLEMENT CHECK STANDARDS SUMMARY Part 1 - 10SA and ICSAB Standards

Login Number: 185904 Account: EHTXF - Entact Houston Project: Chevron, Perth Amboy

File ID: IT033108M1.DAT QI Limits: 80 to 120 % Recovery Date Analyzed: 03/31/08 Run ID: MA20673

Methods: SWe46 6010B

D: MA20673 Units: 29/1

Time: Sample ID: Metal	ICSA True	IJSAB True	23:23 105A3 Results	t Rec	23:79 ICSAB5 Resulty	f Rec	02:10 EC5A4 Results	t Rec	02:25 ICJAB4 Results	t Rec
Alnurvin	560000	500000	472000	94.4	467000	93.4	477000	95.4	474000	94.8
Antimony		1000	0.94		983	98.3	2.7		990	99.0
Arsenic		1000	-0.15		988	98.8	3.1		984	98.4
Barium		570	1.2		525	105.0	1.4		552	106.4
Beryllium		500	0.74		50 <i>9</i>	301.8	0.72		513	182,6
Jadmium		1000	2.1		970	97.0	2.3		977	97.7
Calcium	400000	400000	385000	96.3	380000	95,0	387006	96.8	384000	96.0
Chromzum		500	1.7		514	102.8	5.1		519	103.8
Cobalt		500	2.3		483	96.6	1.7		486	97.2
Copper		500	9.2		520	104.0	9.3		526	105.2
lrom	200000	200000	194000	97.û	195000	9 7.5	198400	96.5	195000	97. 5
Lead		1000	-1.4		954	95.4	0.23		960	96.0
Magnesium	500000	500000	509000	301.8	509000	101.8	505000	101.0	506000	101.2
Мапдалезе		500	5.1		5û9	101.8	5.2		513	102.6
Molybdenum		500	1,8		5(15	101.0	0.46		504	100.8
Nickel		1000	-1.5		949	94.9	0.049		952	95.2
Palladium		500	11.5		523	104.6	7.5		528	105.6
≱ctassium			2370		2130		2120		2070	
Selemium		1000	0.46		990	99.0	0.18		993	99.3
Silison			-110		-88		-110		-82	
Silver		1000	0.51		1050	105.0	0.31		1060	105.0
Sodium			41.7		-330		-17		-110	
Thallium		1000	11.7		1030	103.0	1.2		1940	104.0
Tin			-1.5		-1.8		-5.2		-2.€	
Vanadium		500	- 0. 33		509	101.8	-2.3		509	101.8
Zinc		1000	-7.5		957	95.7	-7.4		957	95.7

(*) Outside of QC limits (anr) Analyte not requested

Accurest Laboratories Instrument Runlog Inorganics Analyses

Login Number: J85904 Account: EHTXF - EntAgt Houston Project: Chevron, Perth Amboy

File ID: ITG40108M2.CAT Analyst: ND Parameters: Pb

Sate Analysed: 04/01/08 Run IU: MA20680

Methods: 5W846 6519B

Time	5ample Description	Dilhtion PS Faggor Regov	Somments
14:10	MA20680-5TD1	1	5TDA
14:15	MA20680-5TD2	1	STDB
14:23	MA20680-3T23	1	5TBC
14:29	MA20620-STD4	1	eqre
14:35	MA20680-STD5	1	STDE
14:41	MA20680-5756	1	STDF
14:40	MA20680-5TD7	1	STDG
14:54	MA20680-5008	1	STDR
15:00	MA20680-5TD9	1	STGI
15:13	MA20680~HSTD1	3	
15:20	14A20680-CRIB1	1	
15:26	MA20680-CRIA1	1	
15:32	MA20680-1CV1	1	
15:39	MA29680-ICB1	1	
15:46	14A20689-ICCV1	1	
15:53	MAZ0680-CCB1	:	
16:12	MA20680-IC5A1	1	
16:18	MA20680-ICSAB1	3	
16:24	222222	1	
16:29	222322	10	
16:36	272222	1	
16:42	22222	1	
16:49	MA20680-CCV1	1	
16:55	MA20680-CCB2	1	
17:01	MP42998-MB4	1	
17:07	MP42928-LC3	1	
17:13	Z2%%ZZ	1	
17:20	E22222	1	
17:26	221122	1	
17:22	MP43061-MB1	1	
17:38	MP43061-B1	1	
17:44	MP43061-51	1	
17:50	MP43061-52	1	

Accutest Laboratories Instrument Runlag Inorganics Analyses

Login Number: J85904 Account: EMTXF - Entact Houston Project: Chevron, Perth Amboy

File IO: ITO40108MZ.DAT Analyst: ND Parameters: Pb

Date Analyzed: 04/01/08 Run ID: NAZ0680

Methods: SW846 6012B

Time	Sample Description	Dilution Factor	P5 Recsy	Comments
17:56	J85841-14R	1		(sample used for QC only; not part of login 285904)
18:03	MA20680-CCV2	1		
18:09	MA20680-CCES	1		
18:15	MP43061-SD1	5		
18:21	ZZZZZZ	1		
18:28	2222Z	1		
18:34	722237	1		
18:40	ZZZZZZ	1		
18:46	ZZZZZZ	1		
18:52	22222	1		
12:58	MP43030-MB2	1		
19:04	MP43030-561	1		
19:11	MA20680-CCV3	1		
19:17	MA2G680-CCB4	1		
19:23	22222	1		
19:29	MT43058-£1	1		
19:36	MP43058-SZ	1		
19:45	MP43062-MB1	2		
19:51	MP43662-B1	1		
19:57	MP43062-LC1	1		
20:04	MP43062-S1	2		
20:09	MP43062-S2	1		
20:16	J85451-11R	1		(sample used for QC only; not part of logim J85904)
20:22	MP43062-SD1	5		
0:28	MA20680~CCV4	2		
0:34	MA20680-CCB5	1		
0:40	222322	1		
0:47	ZZZZZZ	1		
0:53	222222	1		
0:59	222222	2		
1:05	222322	1		
1:11	223222	1		
1:17	22222	1		

Accutest Laboratories Instrument Runlag Inorganics Analyses

login Number: J85904 Attount: BNTXF - Entatt Houston Project: Thevron, Perth Amboy

File ID: 1T040108M2.DAT Analyst: ND Parameters: Pb

Date Analyzed: 04/01/09 Run ID: MA20680

Methods: SW846 6010B

Time	Eample Description	Dilution Factor	⊬S Recou	Comments
22:23	222222	1		
21:30	222222	1		
21:36	222222	1		
21:42	MA20680-ECV5	1		
21:48	MA20680-CCB6	1		
21:55	2 <i>2</i> 2222	5		
22:07	222222	1		
22:13	ZZZZZZ	1		
22:19	822228	2		
22:25	22222	1		
22:21	222222	1		
22:37	ZZZZZ	1		
22:43	222222	2		
22:50	32222	1		
22:56	ZZ2322	ž.		
23:02	MA2G68C-5CV6	1		
23:08	MA20680-CCB7	1		
23:44	222332	3.0		
23:23	MP43042~MB2	1		
23:53	MP43042-B2	1		
23:48	MA20680-IC5A2	1		
23:54	MA20680-ICSABZ	1		
00:02	MA20680-CCV7	1		
00:07	MA20680-CCB8	Ţ		
00:13	ZZ2ZZZ	1		
00:19	MP43G42-S1	i		
00:32	MP43042~152	1		
00:38	MP43042-SZ	1		
	J86495-2			(sample used for QC only; not part of login J85904)
00:51	MP43042-SD2	5		
00:57	222222	1		
01:03	2222ZZ	1		
01:09	Z2Z22Z	1		

Alcutest Laboratories Instrument Runlog Inorganics Analyses

Login Number: J85904 Account: EHTXF - Entact Houston Project: Chevron, Perth Amboy

File 1D: IT040108M2.DAT

Date Analyzed: 04/01/08 Run 1D: MA20680

Methods: SW846 6010B

Analyst: No	
Parameters:	Pb

----->

Time		Dilution PS Factor Rec	ccv lomments
02:15	5 MA20680~CCV8	1	
01:23	MA20680-CC89	1	
01:28	3 222222	<u>:</u>	
02:34	J85904~1	1	
Last	J85904-2 reportable sampl ZZZZZZ	50 e/prep for job	J85904
01:52	ZZZZZZ	1	
01:58	ZZZZZZ	1	
02:05	ZZZZZZ	1	
02:11	ZZZZZZ	1	
02:17	Z232ZZ	1	
02:23	ZZZZZZ	1	
02:29	MA20680-CCV9	1	
02:36	MA20680~CCB16	1	
02:42	22222	5 +	
02:48	22222	1	
02;54	Z%ZZZZ	1	
03:00	ZZZZZZ	3	
03:06	ZZZZZZ	1	
03:13	ZZZZZ2,	1	
03:22	MP43063~MB1	2	
03:28	MP43065~B1	1	
03:34	MP43063~S1	1	fisol
03:41	MP43063~S2	1	teol
03:47	MA20680~CCV10	1	
03:53	MA20680-CCB11	1	
03:59	J86019~1	1	(sample used for QC =nly; not part of login J85904)
04:06	MP43063~SD1	5	tsol .
	ZZZZZZ	1	
04:18	ZZZZZZ		
04:24	222222	1	
04:30	222222	1	
04:36	222222	1	

Accutest Laboratories Instrument Runlog Inorganics Analyses

Login Number: J85904 Account: EHTXF - Entact Houston Project: Chevron, Perch Amboy

File 15: 1T040108M2.JAT Analyst: ND

Parameters: Pb

------->

Date Analyzed: 04/01/08 Run 1D: MA20680

Methods: SW846 6010R

Time	Sample Description	Dilution Pastor		Commests				
64:42	ZZZZZZ	1			 ····	*	·	
04:49	ZZZZZZ	i						
04:55	722233	1						
05:01	MA20680-CCV11	1						
05:07	MA20680-CC812	1						
05:13	ZZZZZ <i>X</i> ,	<u>.</u>						
05:20	ZZZZZ	1						
05:26	ZZZZZZ	1						
05:32	ZZZZ Z ,Z	1						
05:38	ZZZZZZ	1						
05:44	ZZZZZZ	1						
05:50	ZZZZZZ	1						
05:56	ZZZZZZ	1						
06:03	ZZZZZZ	Ţ						
06:09	Z3ZZZ Z	1						
06:15	MA20480-CCV12	1						
06:21	MA20680-CCB13	1						
07:31	MA20680-1CSA3	1						
07:38	MA20680-1CSAB3	1						
07:44	MA20680~CCV13	1						
Last r	MA20680-CCB14 eportable CC8 fo ZZZZZZ	r job J259	04					
08:34	222222	1						
08:40	222322	1						
08:46	22222Z	1						
08:51	MA20680-1CSA4	1						
08:58	MA20680-1CSAB4	1						
09:04	MA20680-CCV14	<u>1</u>						
09:10	MA20686-CCB15	1						

Refer to raw data for calibration curve and standards.

Login Number: J85904 Account: EMTXF - Entact Houston Project: Chevron, Petth Amboy

File ID: IT040108M2.DAT Analyst: NO Parameters: Pb

0ate Analyzed: 04/01/08 Run II/: MA70680

Mechods: SW846 6010B

Time	Sample Oescrzption	Istd#2
4:10	MA20688-STD1	69640 >
14:16	MA20680-STD2	69532
14:22	MA20680-STD3	69792
4:29	MA20680-STD4	69520
14:35	MA20680-ETD5	68990
14:41	MA20680-STD6	68564
[4;48	MA20680-STD7	67857
4:54	MA20680-STD8	67405
5:00	MA20680-STD9	67305
15:13	MA20680-HSTD1	67292
5:20	MA20680-CRIBI	68693
5:26	MA20680-CRIA1	69034
5:32	MA20680-ICV1	68883
5:39	MA20680-ICB1	69170
5:46	MA20680-ICCV1	67650
E:53	MA20680-CCB1	59267
6:12	MA20680-ICSA1	64612
6:18	MA20680-ICSAB1	64869
6:24	Z32Z2Z	69674
6:29	ZZ2ZZZ	67952
6:36	Z3ZZZZ	68976
6:42	222332	66836
6:49	MA20680-CCV1	67507
6:55	MA20680-CCB2	69048
7:01	MP42998~MB4	64801
7:07	MP42998-LC3	67432
7:13	ZZZ Z Z	65295
7:20	223222	65632
7:26	Z2ZZZZ	65942
7:32	MP43061-MB1	65246
7:38	MP43061-BI	65008
7:44	MP43061-S1	64610

Logic Number: J85904 Account: EHTXF - Entact Houston Project: Theyron, Perth Amboy

File ID: IT0401D8M2.DAT Analyst: ND Parameters: Pb

Date Analyzed: 04/01/08 Run 10: MA20680

Methods: SW846 6610B

Time	Sample Description	isld ∤1
17:56	J85841-14R	64694
18:03	MA20680-CCV2	66081
18:09	MA20680-CCB3	67632
18:15	MP43061-891	66279
18:21	72222	65572
18:28	22222	64824
10:34	ZZZZZZ	64785
18:40	223222	64833
18:46	Z Z ZZZ%	65189
18:52	222222	64625
18:58	MP43030-MB2	64950
19:04	MP43020-LC1	66834
19:11	MAI0680-CCV3	66083
19:17	MA20680-CCB4	67274
19:23	22222	
19:29	MP43058-S1	72263
19:36	MP43058-\$2	72213
	MP43062-MB1	68D78
	MP43062-B1	66192
	MP43062-LC1	70421
	MP43062-S1	68620
	MP43062-82	68935
	J85451-11R	705/86
	MP43062-8D1	68353
	MA20680-CCV4	66407
	MA20680-CCB5	67892
		71302
20:47		70920
20:53		70294
20:59		66048
21:05		70150
21:11		68991
21:17		69264
~		09204

Login Number: J85964 Account: ESTXF - Shtact Houston Project: Chevron, Perth Amboy

File ID: 1T040108M2.CAT Analyst: WD Parameterg: Pb

Date Analyzed: 04/01/08 Run ID: MAZ0680

Methodg: SW846 6010B

Time	Sample Description	Istd # l
21:23	ZZZZZZ	72156
21:30	ZZ22ZZ	7058 <u>5</u>
21:36	222222	70172
21:42	MA20680-CCV5	£6598
21:48	MAZ0680-CCB6	67576
21:55	722222	66977
22:07	32222	76398
22:13	222222	69269
22:19	222222	69851
22:25	222222	69097
22:31	222322	68705
22:37	2ZZZZZ	68679
22:43	22222	69068
22:50	ZZZZZZ	67115
22:56	ZZZZZZ	£8212
23:02	MA20680-CCV6	65773
23:08	MA20680-CCE7	67.276
23:14	22222	66891
23:23	MP43042-MB2	67377
23:33	MP43042-B2	66109
23:48	MA20685-ICSA2	62742
23:54	MA20680-ICSAB2	62568
00:01	MA20680-CCV7	66159
00:07	MA20680-CCB8	67116
00:13	ZZZZZZ	70048
00;19	MP43042+S1	67972
00:32	MP43042-1,C2	70340
00:28	MP43042-S2	67686
00:44	J86496-1	69222
00:51	MP43042+SD1	67356
00:57	222222	68167
01:03	ZZZZZZ	68615
01:09	222222	69126

logiπ Number: J85904 Account: EHTXF - Entact Houston Project: Cheuran, Perth Amboy

File ID: ZTO40108M2.DAT Analyst: ND Parameters: Pb

Date Analyzed: 04/01/08 Run ID: MA20680

Methods: 5W846 6G10B

Time	Jample Description	Istd # 1
01;15	MA20680-CCV8	67401
01:21	MA20680~CCB9	68500
01:28	333523	69723
01:34	J85904-1	72221
01:40	J85904-2	71210
0::46	222222	70347
01:52	322322	69825
02:58	22222	70237
02:05	722222	71383
02:11	222222	70195
02:17	BZZZZZ	69341
02:23	22222z	68010
02:29	MA20680-CCV9	68314
S2:36	MA20680-CCB10	70325
02:42	ZZZZZZ	72664
02:48	22222	74611
07:54	32222	71207
03:00	ZZ323Z	71256
03:06	222323	73027
03:13	222222	73988
03:22	MP43063-MB1	70460
03:28	MP43063-B1	68971
03:34	MP43063-S1	69980
03:41	MP43063-S2	70334
03:47	MA20680-CCV10	69017
03:53	MA20660-CCB11	70272
3:59	J86019-1	71637
04:06	MP43063-SD1	70719
04:12	ZZZZZZ	72616
04:18	ZZZZZZ	74192
04:24	ZZZZZZ	74703
04:3G	Z2ZZZZ	73326
4:36	232222	71920

Logic Number: J85904 Account: EHTXF - Entact Houston Project: Chevron, Perth Amboy

File 15: 1T046108M2.DAT Analyst: ND Parameters: Pb

Date Analyzed: 04/01/08 Methods: SW846 6010B Run 1D: MA20686

Time	Sample Nescription	lstd #)
04:42	22222	76086
04:49	22322%	74115
04:55	222222	T3719
5:01	MA20680-CCV11	70344
5:07	MAZ0680-CCB12	72523
5:13	227272	78792
5:20	ZZZZZZ	73775
5:26	322222	72958
5:32	ZZZZZZ	74725
5:38	Z3ZZZZ	75568
5:44	ZZZZZZ	74825
5:50	ZZZZZZ	75606
5:56	222222	76150
6:03	ZZZZZZ	74119
6:09	ZZZZZZ	76305
6:15	MA20680-CCV12	71139
6:21	MA20680~CCB13	72296
7:31	MA20480-ICSA3	68455
7:38	MA20680-ICSAB3	68085
7:44	MA20680-CCV13	71936
7:50	MA20680-CCB14	73221
8:24	222222	74375
3:34	222222	74486
3:40	ZZZZZZ	79582
3:46	ZZZZZZ	73721
3:51	MA20680-105A4	68198
3:58	MA20680-1CSAB4	68292
9:04	MA20680-CCV14	71794
9:10	MA20680-CCB15	73007
= Ref	ference for 1870	limits. ! = Outside limits.
EGEND: std# stß#1		L:mits 60-125 %

Login Number: J85904 Account: EHTXF - Entact Houston Project: Cheuron, Perth Amboy

File ID: 17040108M1, DAT QC Limits: result < RL

Date Analyzed: 04/01/08 Run 10: MA20680

Methods: SW846 6010B Units: ug/1

Time: Sample ID: Metal	RL	3 D.L	15:39 fCBl raw	final	15:53 CCB1	final	:6:55 CCB2	fire.	18:09 CCB3	£10-1
Aluminum	200	26	anr	111121	T9M	final	raw	final	raw	final
Antimony	20	5.3	at							
Arsenii	20	4.2	anr							
Sarium	200	.3	an:							
Beryilium	5.0	.2	anr							
Cadmirim	5.0	. 4	anr							
Calcium	5000	85	anr							
Chrom; um	10	.9	anr							
Cobalt	50	1.1	anr							
Copper	25	1.3	anr							
iron	100	₿.3	anr							
Lead	20	2.7	0.020	<20	-0.54	<20	-1.9	<20	0.58	<20
Magnesium	5000	24	anı							
Manganese	15	.4	anr							
Molybdenum	20	1.2								
Nickel	4 D	1.7	anr							
Palladium	50	5.8								
Potassium	10000	65	anr							
Selenium	20	3.9	ánr							
Stlicon	200	6.6								
Sílver	10	1.5	anr							
Sodium	70000	480	anr							
Thall:um	Ţ0	5	anr							
Tin	50	2.7								
Vanadium	50	1.6	anı							
3inc	20	4 . Z	anr							

(*) Outside if QC limits (air) Analyte not requested

BLANK RESULTS SUMMARY Part 1 - Imitial and Continuing Calibration Blanks

Logia Number: J85904 Account: SHTXF - Entact Houston Project: Chevron, Pesth Ambay

Fale ID: 1T040108M2.DAT QC Limits: result < RL

ಬಿಠdmıum

Calcium

lron

Lead

Molybdenum

Selenium

Date Analyzed: 04/01/08

Methods: SW846 6018B Onits: ug/l

Run ID: MA20680 Time: 19:17 20:34 21:49 23:08 Sample IS: CUB4 CCB5 CCB6 CCB7 Metal R.1, IDL raw final -aw final raw final raw final Aluminum 200 26 anr Antimony 20 5.3 anr 20 Arsenic 4.2 anr Barium 260 . 3 anr Befyllium 5.0 .2 anr

-1.3

<20

-0.85

<20

0.37

<20

Chromium 10 .9 anr 1.1 Cobalt 50 anr 25 1.3 Copper aur

100

20

5.0

5000

. 4

85

8.3

2.7

1.2

3.9

5

anr

anr

anr

an≓

anr

anr

anr

anr

anr

-0.37

<20

Magnesium 5000 24 Mänganese 15 . 4 20

Nickel 40 1.7 Palladium 50 5.8 Potassium 10000 66

20

illicon 200 5.6 Silver 10 1.5 anr Sodium 10000 480 ann Thalliem

Tin 50 2.7 Vanadium 50 1.6 20 Zino 4.2

10

(*) Outside of QC limits (anr) Analyte not requested

BLANK RESULTS SUMMARY Part 1 \sim Initial and Continuing Calibration Blanks

Logan Number: J85904 Account: EHTXF ~ Entact Houston Froject: Chevron, Perth Amboy

File ZD: 1T040108M2.3AT QC Limits: result < RL

Date Analyzed: 04/01/08 Run ID: MAZ0680

01/08 Me

Methods: 3W846 6010B

Units: ug/l

Time: Sample 10: Mesal		lar	00:07 CCB8 raw	final	01:21 CCB9 raw	fical	02:36 CCB10		03:53 CCB11	
Aluminum	200	26	anr		144	final		final	ra w	final
Antimony	20	5.3	anr							
Arsenic	20	4.2	anr							
Batium	200	د. د.	anr							
Beryllium	5.0	.2	anr							
Cadmium	5.0	. 4	anr							
Calcium	5000	8 5	anr							
ũhrom₁um	10	. 9	anx							
Cobalt	50	1.1	anr							
Copper	25	1.3	anr							
[ron	100	8.3	anr							
Lead	20	2.7	~1.5	<20	~1.3	<20	0.65	<20	~0.93	<20
Magnesium	5000	24	anr				0,02	12,0	-0.95	~20
Manganese	15	. 4	anr							
Molybdenum	20	1,2								
Nickel	40	1.7	anr							
Palladium	50	5.8								
Potassium	10000	66	anr							
Selenium	20	3.9	anr							
Silicon	200	€.6								
Silver	10	1.5	anr							
Sadium	20000	480	anr							
Thalliom	10	5	anr							
Tin	50	2.7								
Vanadium	50	1.6	anr							
Zinč	20	4.2	anr							
(*) Outgrade +5	. 00 1									

(*) Outside of QC limits (anr) Analyte not requested

BLANK RESULTS SUMMARY Part 1 - Initial and Continuing Calibration Blanks

login Number: J85904 Account: EHTXF - Entact Houston Project: Chevian, Perth Amboy

File ID: 1T040108M2.DAT QC L)mits: result < RL

Date Analyzed: 04/01/08 Run 19: MA20680

Methods: SW846 6010B Units: ug/l

100m 200 26 anr anr anr 200 3.3 anr anr 200 3.4 anr 200 3.5 anr 3.5	Time: Sampie ID: Metal	RE	IDL	05:07 CCB12 raw	final	05:21 CCB13 raw	final	07:50 CCB14	f 1 = - 1
mony 20 5.2 and mony 20 5.2 and mony 20 3.3 and mony 20 3.3 and mony 20 3.3 and mony 20 3.4 and mony 20 3.4 and mony 20 3.4 and mony 20 3.5 and mony 20 3.5 and mony 20 3.7 0.43 and mony 20 3.7 0.43 and mony 20 3.9 and mony 3.9 and	luminum				211101		-1116;	raw	final
Ance 20 4.2 are com 200 .3 and and 1111 mm 5.0 .2 and and 1111 mm 5.0 .4 and and 1111 mm 5.0 .4 and and 1111 mm 10 .9 and 111	ngimony								
Section Sect	Arsenic	20							
1112m 5.0 .2 anr num 5.0 .4 anr num 5000 65 anr num 10 .9 anr lt 50 1.1 anr er 25 1.3 anr l00 8.2 anr 20 2.7 0.43 <20	3arium	200							
Section Sect	eryllium	5.0	. 2	anr					
10	admium	5.0	. 4	anr					
1t	algium	5000	6 <u>c</u>	ânr					
25 1.3 anr 200 8.3 anr 20 2.7 0.43 <20 ~2.5 <20 0.45 <20 estum 5000 24 anr ansese 15 .4 anr detum 20 1.2 el 40 1.7 anr duum 50 5.8 estum 10000 66 anr ann 20 3.9 anr en 10 1.5 anr ann 10000 480 anr ium 10000 480 anr 50 2.7	rom;um	10	. 9	anr					
100 8.3 anr	balt	50	1.1	anr					
20 2.7 0.43 <20 -2.5 <20 0.45 <20 estum 5000 24 anr anr anese 15 .4 enr anr anese 16 .4 anr anr anese 17 .4 anr anr ans anese 18 .4 anr anr anr ans an anr ans an anr ans an anr ans anr ans anr	pper	25	1.3	anr					
### 20	cou	100	8.3	anr					
anese 15 .4 anr odenum 20 1.2 el 40 1.7 anr odium 50 5.8 esium 10000 66 anr odium 20 3.9 anr odon 200 6.6 er 10 1.5 anr om 10000 480 anr ium 10 5 anr ium 50 2.7	ad	20	2.7	0.43	<20	-2.5	<20	0.45	<20
20 1.2 21 40 1.7 anr 23 50 5.8 25 ium 10000 66 anr 25 anr 26 10 1.5 anr 27 ium 10000 480 anr 28 ium 10 5 anr 29 ium 50 2.7	gnesium	5000	24	anr					
21 40 1.7 anr 23 1000 66 anr 200 3.9 anr 200 6.6 21 10 1.5 anr 21 10 5 anr 21 10 5 anr 21 20 50 2.7	ganese	15	. 4	anr					
addium 50 5.8 ssium 10000 66 anr con 20 3.9 anr con 200 6.6 cr 10 1.5 anr um 10000 480 anr ium 10 5 anr ium 50 2.7 ium 50 1.6 anr	lybdehum	20	1.2						
ssium 10000 66 anr pium 20 3.9 anr pium 200 6.6 pr 10 1.5 anr pium 10000 480 anr ium 10 5 anr 50 2.7	ckel	40	1,7	ānr					
20 3.9 anr 200 6.6 10 1.5 anr 10 100 anr 1000 480 anr 10 5 anr 50 2.7	lladıum	50	5.8						
200 6.6 10 1.5 anr 10000 480 anr ium 10 5 anr 50 2.7	tassium	10000	66	anr					
ium 10 1.5 anr ium 10000 480 anr 50 2.7	lenium	20	3.9	anr					
ium 10000 480 anr ium 10 5 anr 50 2.7	licon	200	6.6						
ium 10 5 anr 50 2.7	lver	10	1.5	anr					
50 2.7 50 1.6 anr	dium	10000	480	anı					
11um 50 1.6 anr	āllium	10	5	anr					
	n	50	2.7						
20 4.2 anr	nadıım	50	1.6	anr					
	.nc	20	4.2	anr					

(*) Outside of QC limits (anr) Analyte not requested

Login Number: 195904 Account: EHTXF - Entact Howston Project: Chevros, Perth Amboy

File ID: IT040108M2.DAT QC Limits: 90 to 110 % Recovery

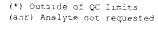
lanz) Analyte not requested

Date Analyzed: 04/01/08

Mechodo: SW846 6010B

,	ΣD:	MA20680	Units:	95/1	
_					

QC Limits: 90 to 110 # Recovery			Run ID: MA20680 Units: 95/1						
Time: Sample ID: Metal	IĊV Tru∉	15:31 ICV1 Results	% Rec	CCV True	16:49 CCV1 Results	* Rec	CCV True	18:03 CCV2 Results	% Rec
Aluminum	аг,г								
Απτιποπγ	anr								
Arsenic	anr								
Barjum	anr								
Besyllium	an <u>;</u>								
Cadmium	anr								
Calcium	anr								
Chromium	anr								
Cobalt	anr								
Copper	anr								
Iron	anı								
Sead	1000	1010	101.0	2050	2020	201.0	2000	2020	101.0
Magnesıum	anr								
Manganese	anr								
4olybdenum									
Nickel	asr								
Palladium									
Potassium	anr								
Sej e ການແ	a5r								
Silicon									
Silver	anr								
Sodium	anr								
Thallium	anr								
ſin									
/anadium	an⊻								
Sanc	anr								
(*) Outside of	QC limit	\$							


Login Number: JB5904 Actount: EHTXF + Entact Houston Project: Thevron, Perth Amboy

File ID: IT046108M2.DAT QC Limits: 90 to 110 % Recovery

Date Analyzed: 04/01/06

Methods: SW846 6010B Run ID: MA20680 Units: 2g/1

Fime: 19:11 20:28 21:42 Sample ID: CCV CCV3 CCV CCV4 CCA CCV5 Metal True Results & Rec True Results % Rec True Results * Rec Aluminum anr Antimony ani Arsemic anr Barium anr Berylliom anr Cadmium anr Calcium anr Chromium anr Cobalt any Copper anr Tros anr Lead 2000 2020 161.0 2000 2050 102.5 2000 2050 102.5 Mag∴esium anr Manganese anr Molybdesum Nickel anr Palladium Potassium anr Selenium anr Siliton 51lver алг Sadium anr Thallıum apir Tin Vanadıum anr 2inc anr

Login Mumber: J65904 Account: EfiTXF - Entact Houston Project: Chevson, Perth Amboy

File ID: JT049108NZ.DAT QC Limits: 90 to 110 % Recovery

(*) Outgade of QC lamats (anr) Analyse not requested Date Analyzed: 04/01/08 Run ID: MA20680

Methods: SW846 6010B Urgits: qg/l

·····					+D. MAZOO		OITELS: (
Time; Sample IS; Metal	CCV True	23:02 CCV6 Results	% P.ec	CCV True	00:01 CCV7 Results	% Rec	SCV Ttye	01:I5 CCV8 Results	ł Rec
Juminim	аг.г								
Antimony	änr								
Arsenic	arır								
Barinm	anr								
3eryll_um	anr								
Cadmium	anr								
Calcium	anr								
Chromium	anr								
Cobalt	anr								
Copper	anr								
ron	anr								
ead	2000	2090	104.5	2000	2100	105.0	2000	2080	:04.0
Magnesium	anr								
langanese	anr								
lolybdenum									
lickel	anr								
alladium									
otassium	anr								
elenıum	anr								
ılícon									
ilver	anr								
odium	anr								
hallıum	anr								
ín									
aradium	anr								
ınc	anr								

Login Number: J85904 Account: EHTXF - Entact Houston Project: Chevion, Perth Amboy

File ID: ITD40108M2.DAT QC limits: 90 to 110 % Recovery

(anr) Analyte not requested

Date Analyzed: \$4/01/08 Run ID: MAZ0680 Methods: SW846 6010B Units: ug/l

Time; Sample ID; Metal	CCV True	02:29 CCY9 Results	% Re≙	CCV True	03:47 CCV10 Results	₹ Pec	CCV True	05:01 CCVli Results	₹ Rec
Alumınum	anr								
Antamony	anr								
Arsenic	anr								
Barium	anr								
Beryllium	anr								
Cadmium	anr								
Calcium	anr								
Chromium	anr								
Cobalt	anr								
Copper	anr								
Iron	anr								
Lead	2000	2040	102.0	2000	2000	100.0	2000	1970	98.5
Magnesium	anr								
langanese	anr								
lolybdenum									
Nickel	anr								
Palladium									
otass:um	anr								
ejenium	ańr								
Silígon									
ilver	anr								
odium	anr								
hallíum	anr								
'in									
anadium	anr								
inc	anr								

Login Number: J85904 Account: EHIXF ~ Entact Hogston Project: Chevron, Perth Amboy

File ID: 1TG40108M2.DaT QC Limits: 90 to 110 % Recovery

(*) Outside of QC limits
(anr] Analyte not requested

Date Analyzed: 54/01/08 Run 1D: MA20680 Methods: SW846 6010B Units: ug/l

Time: Sample ID: Metal	2CV Trie	შნ:15 ეეVl2 Results	≒ Reģ	CCV True	07:44 CCVl3 Results	[§] Re≘
Alumgnum	anr					
Antimony	acr					
Arsenic	anr					
Barium	anr					
Beryllıum	anr					
Cadmıum	anr					
Çalciem	anr					
Chromium	anr					
Cobalt	anr					
Copper	anr					
Iron	ann					
l.ead	2000	1900	95.0	2000	1880	94.0
Magnesium	anr					
Manganese	anr					
Molyboenum						
Nickel	acr					
Palladium						
Potassiwn	ant					
Selenium	anr					
Siligon						
Silver	anr					
Sodium	anr					
Thallium	anr					
Tin						
Vanadism	anr					
Zinc	anr					

BIGH STANDARD CHECK SUMMARY

Login Mumber: J85904 Account: BHTXF - Entart Houston Fraject: Chevron, Perth Amboy

File II: I7040108M2.DAT QC Limits: 95 to 105 % Recovery

(anr) Analyte not requested

Date Analyzed: 54/91/08 Run ID: MA20685 Methods: 9W846 4010B Units: ug/l

on ID: MA20685 Units: ug/

Time: Sample ID: Metal	HSTD True	15:13 NSTDl Results	₹ Rec
Aluminum	anr	****	
Antimony	anr		
Arsenic	an:		
Barium	anr		
Beryllium	anr		
Cadmíum	anr		
Calcium	arır		
Chromium	anr		
Cobalt	anr		
Copper	anr		
žron	ası		
Lead	4000	3980	99.5
Magnesium	anr		
Manganese	anr		
Molybdenum			
Nickel	anr		
Pallad⊥um			
Potassium	anr		
Selenium	anr		
Silicon			
Silver	anr		
Sodium	anr		
Thallium	amr		
Tìn			
Vanadium	arı≆		
Zinc	anr		
(*) Outside of	QC limi	ts	

164 of 201 **ZACCUTEST.**J85904

LOW CALIBRATION CHECK STANDARDS CUMMARY

login Number: J85904 Account: EBTXF - Entact Housion Project: Chevron, Perth Amboy

file ID: IT540108M2.DAT QC Limits: 50 to 150 % Recovery

(*) Outside of QC limits
(anr) Analyte not requested

Date Analyzed: 04/01/08 Run IO: MA20680

Methods: SW845 6010B

Onits: ug/l

Time; Sample ID: Metal	CRI True	CRIA True	15:26 CRIA1 Results & Rec
Aluminum			·
Antimony	120	10	
Arsenic	20	20	
Harlum	490		
Beryllium	15	2.0	anr
Cadmium	10		
Calcium			
Chromium	20		
Cobalt	100		
Copper	50		
lron			
Lead	6.0	6.0	
Magnesium			
Manganese	30		
Molybdenum	40		
Nickel	80		
Palladium	100		
Potassium			
Selenium	10	10	
Silicon			
Silve:	20		
Sodium			
Thallium	20	20	
Tin			
	100		

INITIAL LOW CALIBRATION CHECK STANDARS SUMMARY

Login Number: 385904 Account: EHTXF - Entact hooston Project: Chevron, Perth Amboy

File 1D: [T040308M2.DAT QC Limits: 50 to 150 % Recovery

0,8

5(600

20

Date Analyzed: 04/01/08 Run ID: MA20680

Methods: SW846 60108

Qu Dinics. Jo	0 150	t Recovery	Run ID: MA20680	Units: ug/l		
Time: Sample In: Metal	CRIB True	15:20 CRIB: Results % Rec			*****	
Alumanum	400				···	
Antamony	12					
Arsenic	Iε					
Barıum	400					
Beryllium	2.0					

Cobalt 100 Copper 50

Cadmium

Calcium

Chromium

iron 200 Lead 6.0

6.6 110.0

Magnesium 5000 Manganese

Molybdenum 40

Nickel 80 Palladium 100

Potassium 10000

Selenium 20 Silzeon 400

Silver 20

Sodium 10000 Thallıum 20

Tin 20 Vanadıum 100

%inc 40

(*) Outside of QC limits (anr) Analyte not requested

INTERFERING ELEMENT CHECK STANDARYS SUMMARY Part 1 - 105A and ICEAB Standards

Login Number: 385904 Account: BHTXF - Entact Houston Project: Chevron, Perth Amboy

File ID: IT040108M2.DAT QC Limits: 80 to 120 % Recovery

State Analyzed: 04/01/08 Run II: MA20680

Methods: SW846 60102 Units: ug/1

		,,,,,,		1(2)	15. PM200	30	Ourra: ad	3/1		
Trme: Sample ID: Metal	ICSA True	ICSAB True	16:12 109Al Results	î Rec	i6:18 ICSAB1 Pesults	۹ Pet	23:48 ICSA2 Results	۹ Ret	23:54 105AB2 Rebults	₹ Pet
Alaminum	500000	500000	480000	96.0	473000	94.6	479000	95.8	475:100	94.6
Antimoty		1000	€.3		1050	105.0	9.9		1050	105.0
Arsenic		1000	-1.1		1950	105.0	1.5		1040	104.0
Sarıum		500	1.1		528	105.6	ĭ.0		52€	105.2
Beryllium		500	0.73		630	106.0	0.72		529	105.3
Cadmium		1000	3.5		1030	303.0	4.2		1030	103.0
Calcfum	400000	400000	400000	160.0	3940@0	98.5	402000	100.5	395000	98.8
Chromium		500	1.8		525	104.4	1.6		514	102.5
Cobalt		500	1.7		505	101.0	1.3		508	101.6
Copper		500	7.8		529	105.8	8,7		524	104.3
Iron	200000	200000	195000	98.0	:97000	98.5	193000	96.5	193000	96.5
Lead		1000	+2.5		1020	102.0	+0.58		1630	103.0
Magnesinm	500000	500000	524000	104.8	521000	104.2	514000	1d2.8	510000	102.0
Manganese		500	4.9		523	104.6	4.7		520	204.0
Mo)ybdenum		500	0.29		524	102.8	0.23		505	101.0
Nickel		2002	-0.68		989	98.9	-0.12		963	96.3
Palladium		500	3.7		532	106.4	4.6		544	108,8
Potassium			2480		2390		2450		2450	
Selenium		1000	-0.88		1950	105.0	-ž.O		1050	205.0
Silicon			-110		-94		-110		-82	
Silver		1000	0.64		1090	109.0	1.3		1090	109.0
Sodium			-220		-490		-300		-210	
Thallium		1000	-3.7		1020	102.0	-8.6		992	99.2
Tin			-5.5		-7.2		+7.3		-10	
Vanadium		500	-3.4		515	103.0	-4.1		500	2.001
Zinc		1000	-7.6		1010	101.0	8. ثــ		010	101.0

(*1 Outside of QC limits (ant) Analyte not requested

INTERFERING ELEMENT CHECK STANDARDS SUMMARY Fart 1 - IUSA and IUSAB Standards

Login Number: J85904 Account: EHTXF - Entact Houston Project: Chevron, Perth Amboy

File ID: IT640108M2.DAT QC Limits: 80 to 120 % Recovery

Date Analyzed: 04/01/08 Run ID: MA10680

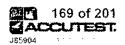
Methcds: 5W846 6010B Units: ug/1

						or co. dg/1
Time: Sample ID: Metal		ICSAB True	07:31 ICSA3 Resulis	§ Réc	07:38 £CSAB3 Results	% Rec
Alumanum	500000	500000	447005	89.4	445000	89.0
Ancimony		1000	9.8		966	96.6
Arsenic		1000	-2.2		1016	101.0
Barsum		500	0.93		504	100,8
Beryllium		500	0.66		483	96,6
Cadmium		1000	1.€		931	93.3
Calcium	4000000	400000	3€5000	91.3	3€1000	90.3
Chromium		500	1.7		483	96.6
Cubalt		500	0.97		462	92.4
Copper		500	6.6		491	98.2
1ran	200000	200000	190000	95.6	192000	96.0
Lead		1000	-0.92		920	92.6
Magnesium	500000	500000	500000	100.0	501000	100.2
Manganese		500	4.4		486	97.2
Molybdenum		500	-1.2		499	99.8
Nickel		1000	-0.70		894	89.4
Palladıum		500	3.8		497	99.4
Potassium			2150		2120	
Selemium		1000	-2. 5		977	97.7
Silicon			-1:0		-93	
Silver		1000	-0.056		1030	103.0
Sadzum			-34		-180	
Thallium		1000	3.0		2000	100.0
Tin			-6.8		-5.3	
Vanadıum		500	-3.2		50€	101.2
2inc		2 000	-8.0		916	91.6

(*) Outside of QC limits (anr) Analyte nut requesced

Accutest Laboratories Instrument Runlog Inorganios Analyses

Login Number: 385904 Account: EHTXF - Entact Houston Project: Chevion, Perth Amboy


File IC: IT040308M1.DAT Analyst: ND

Parameters: Pb

Sate Analyied: 04/03/08 Run 1D: MA20693

Methods: BPA 200.7, SW846 6010B

Time	Sample Description	Dilution PS Factor Reco	ч Comments	
10:57	MA20693-STD1	I	SIDA	
10:14	MA20693-STD2	2	STDB	
15:20	MA20693~STD3	1	STDC	
10:26	MA20693-STD4	<u> </u>	STOD	
10:33	MA20693-STD5	3	STDE	
10:39	MA20693-STD6	ī	STDF	
10:45	MA20693-STD7	1	STDG	
10:52	MA20693-STD8	1	STDR	
10:58	MA20693-STD9	1	STUI	
11:23	MA20693~HST[)1	ī		
11:39	MA20693-H\$TD2	1		
11:45	MA20693~CRIBI	1		
11:52	MA20693-CRIA1	1		
11:58	MA20693-ICV1	1		
12:04	MA20693-TCB1	1		
12:11	MA20693-ICCV1	1		
12:18	MA20693-CIB1	Ţ		
12:26	MA20693-CRI1	I		
12:32	MA20693-ICSA1	1		
12:39	MARO693-ICSAB1	<u>*</u>		
12:45	MA20693-CCV1	1		
12:51	MA20693-CCB2	1		
13:02	ZZZZZZ	1		
13:08	ZZZZZZ	<u>†</u>		
13:19	MP43D81~MBI	1		
13;25	MP43081-B1	1		
13:31	MP43081-LC1	1		
13:37	MP43081-S1	1		
13:43	MP43081~52	1		
13:49	J87043~1	1	(sample used for QC only; not part of login J85904)	ı
13:56	MP43081-SD3	5		
14:02	MA20693-CCV2	1		
14:08	MA20693~CC53	1		

Accurest Laboratories Instrument Runlog lnorganics Analyses

Login Number: 585904 Account: EHTXF - Intact Bouston Project: Chevron, Perth Amboy

File 1D: ITO40308M1.DAT Analyst: ND Parameters: Pb

Date Analyzed: 04/03/08 Run ID: MA20693

Methods: EPA 200.7, SWB46 6010B

	Time	Sample Description	Dxlution Factor	PS Recov	Cumments
	14:15	22222	1		
	14:21	ZZZZZZ	1		
	14:27	J85904~2A	25		
	14:33	22222	1		
	14:39	MP43064~PS1	1		
	14;45	MP43081~FS1	1		
	14:52	22222	i		
	14:58	MP43089-MB1	1		
	15:04	MP43089-B1	1		
	15:10	MA20693-CCV3	3		
	15:16	MA20693~CCB4	1		
	15:23	222222	5		
>	Last r	eportable sample:	125 prep for 1	ეი ს J8591	04 \$sol
	15:42	MP43089~52	1		9501
	15:48	J86695-13	1		(sample used for QC only; not part of 15gin J85904)
	15:54	MP43089-SD1	5		tsol
	16:00	MA20693-CRIB2	1		
	16:07	MA20693-CR12	1		
	16:14	MA20693-ICSA2	1		
	16:20	MA20693~ICSAB2	1		
	16:26	MA20693-CCV4	1		
>	Last re	portable CCB for	1 job J8590 	04	
	16:56	MF43113~81	<u> </u>		
	17:02	MP43123~S1	1		
	17:08	MP43113~S2	1		
	17:15	J85843-1R	1		(sample used for QC only; not part of logan J85904)
	17:21	MP43113-SD1	5		
	17:27	227222	1		
	17:33	ZZZZZZ	1		
	17:39	223222	1		
	17:45	MA20693-CCV5	1		

Accutest Laboratories Instrument Runlog Inorganict Analyses

lögin Number: J859å4 Account: EHTXF - Entact Houston Project: Chevron, Perth Amboy

File TD: ITO40308ML.DAT Analyst: ND Parameteri: Pb

Date Analyzed: 04/02/08 Rnn 1D: MA20693

Methods: EFA 205.7, EW846 60108

Time	Sample Description	Dilution P5	Comports
<u></u>	MA10693-CCB6		v Columnia
	222222		
	22223		
	222222		
	228222		
	MP43114-MB1		
	MP43114-B1		
	MP43114-51		
	MP43114-52		
	J86806~5		(sample used for QC only; not part of logan J85904)
	MA20693-CCV6		
	MA20693-CCB7		
	MP43114-SD:		
19:12	ZZZZ22	ī	
19:18	ZZ22Z2	<u> </u>	
19:74	ZZZZZZ	1	
19:45	ZZ 2Z Z Z	2	
19:41	22222	1	
19:47	ZZZZZ2	1	
19:53	ZZZZZZ	1	
19:59	222222	1	
20:08	Z2Z5ZZ	1	
20:14	MA20693-CCV7	1	
20:70	MA20693-CCB8	1	
20:26	MP42115-MB1	1	
20:33	MP43115-5C1	1	
20:39	Z222ZZ	1	
20:45	ZZZZZ2	1	
20:53	MP43100-ME1	1	
20:59	MP43100-B1	1	
21:05	MP43100-S1	1	
21:11	MP43100-S7	2	
21:17	387094-1	1	(samp)e used for QC only; not past of logun J859041
			in the second real property of

Accutest Laboratories Instrument Runlog lnorganics Analyses

Login Number: J85904 Account: EMTXF - Entact Houston Project: Chevron, Perth Amboy

File ID: 1T040308M1.DAT Analyst: ND Parameters: Pb

Date Analyzed: 04/03/08 Run ID: MA20693

Methods: EPA 209.7, SW846 6010B

Time		Dilumion Pactor	PS	Comments		
Z1:23	MA20693-CCV8	1		····		
21:30	MA20693-CCR9	1				
21:36	MP43200-SD1	5				
21:42	ZZZZZZ	1				
21:48	ZZZZZZ	1				
21:54	322223	1				
22:01	22222	ì				
22:07	ZZZZZZ	1				
22:13	ZZXZZZ	1				
22:19	32222	1				
22:25	222222	1				
22:31	MA20693-CCV9	1				
22:38	MA20693-CCB10	1				
22:46	ZZZZZZ	3				
22:52	ZZZZZZ	1				
22:59	MP43300-S51	5				
23:05	22222	1				
23:11	ZZZZZZ	1				
23:23	ZZZZZZ	3				
23:47	MA20693-CR183	1 +				
23:53	MA20693-ICSA3	1				
00:00	MA20693-1CSAB3	1				
00:06	MA20693-CCV10	1				
00:22	MA20693-CCB11	1				
81:00	ZZZZZZ	1				
00:25	ZZZ%ZZ	1				
00:31	222222	1				
00:37	ZZZ; ZZ	1				
00:43	MA20693-CCV11	1				
00:49	MA20693-CCB12	1				
00:56	ZZZZZZ	1				
01:02	ZZZZZZ	1				
80:10	ZZZZZZ	1				

Accutest Laboratories Instrument Runlog Inogganics Analyses

Login Number: J85904 Accepnt: ENTXF - Entact Negston Project: Chevron, Perth Amboy

File ID: 1T040308M1.DAT Analyst: ND Parameters: Pb

Date Analyzed: 04/03/08 Run ID: MA20693

Methods: EFA 200.7, SW845 6010B

Time	Sample Description	Dilution PS Factor Re	Comments	
01:14	ZZZZZZ]		
01:20	ZZZZZ%	1		
01:26	223222	1		
01:33	ZZZZZZ	1		
01:39	Z ZZZZ Z	1		
01:45	22222	1		
01:51	ZZZZZZ	3		
01:57	MAZ0693-CCV12	1		
02:03	MA20693-CCB13	1		
02:10	22222	1		
02:16	Z3322Z	1		
02:22	222222	1		
02:28	222222	1		
02:34	Z2ZZZZ	1		
02:40	ZZZZZZ	1		
02:47	22122z	3		
02:53	ZZZZZZ	1		
02:59	222222	1		
03:05	ZZZZZZ	1		
03:11	MA20693-CCV13	1		
03:18	MA20693-CCB14	1		
03:24	222222	ì		
03:30	222222	1		
03:36	122227	1		
03:42	722222	1		
03:48	ZZZZZZ	1		
03:55	22222	1		
04:01	222222	4		
04:09	MP45036~MB3	1		
04:15	MP43036-LC3	1		
04:21	ZZZZZZ	1		
04:27	MA20693-CCV14	<u>*</u>		
04:33	MA20693-CCB15	1		

Accutest Laboraturies Instrument Runlog Inorganics Analyses

Login Number: J25904 Account: ERTXF - Entact Bouston Project: Chevron, Perth Amboy

File ID: IT040308M1.DAT Analyst: ND Pasameters: Pb

Date Analyzed: 04/03/00 Run ID: MA20693

Methods: EPA 200.7, SW846 6010B

Time	Sample Description	Dilution PS Factor Recov	Comments
04:40	MP43064-MB2	1	
04:46	MP43564-B2	ì	
04:52	MP43064-1,C2	1	
04:58	M943064-S1	1	
05:04	MP43064-S2	1	
05:10	J8 <i>6</i> 611-1	1	(sample used for QC only; not part of login J85904)
05:17	MP43064-SD1	5	
05:23	Z\$Z33Z	1	
05:29	ZZ27ZZ	ì	
05:35	MAZ0693-CCV25	1	
05:41	MA20693-CCB16	1 '	
05:48	222233	1	
05:54	ZZZZZZ	:	
06:00	222222	1	
06:06	ZZZXXZ	1	
06:12	333322	1	
06:18	MA20693-CCV16	1	
06:25	MA20693-CCB17	1	
07:34	MA20693-CRIB4	1	
07:40	MA20693-1CSA4	7	
07:46	MA20693+5CSAB4	1	
07:53	MA20693-CCV17	1	
07:59	MA20693~CC918	1	
08:05	Z2ZZZZ	1	

Refer to raw data for calibration curve and standards.

Login Number: J85904 Account: EHTXF / Entact Houston Project: Chevron, Perth Amboy

File ID: ITO40308M1.DAT Analyst: ND Parameters: Pb

| TO40308M1.DAT | Date Analyzed: 04/05/08 | ND | Run ID: MA20693 |

Methods: EFA 200.7, \$W846 6010B

Time	Sample Description	Zrtd#1
10:07	MA20693~3TD1	70404 R
10:14	MA20693-STD?	70154
10:20	MA20693-STD3	70085
10:26	MA20693-STD4	69681
10:33	MA20693-8TD5	58961
10:39	MA20693-STD6	68408
10:45	MA20693-STD7	67472
10:52	MA20693-3T08	67128
10:58	MA20693-STD9	66875
11:23	MA20693-H3TD1	671 :4
11:39	MA20693-HSTD2	67450
11:45	MA20693 CRIB1	69300
21:52	MA20693-CRIA1	68199
11:58	MA20693-ICV1	59145
12:04	MA20693-ICB1	68885
12:11	MA20693-100V1	67649
13:18	MA20693~CCB1	68256
12:26	MA20693-CRI1	68791
12:32	MA20693-ICGA1	64261
12:39	MA20693-1CSAB1	64297
12:45	MA20693-CCV1	67094
12;51	MA20693-CCB2	67360
13:02	ZZZZZZ	72845
13:08	ZZZ3IZ	68439
13:19	MP43081-M81	67321
13:25	MP43081-B1	66604
13:31	MP43081-LC1	70279
13:37	MP43081-S1	58147
13:43	MP43081-32	68288
13:49	J87043-1	69077
13:56	MP43081-\$D1	67651
14:02	MA20693-CCV2	65935
14:08	MA20693-CCB3	67423

Login Number: J8E904 Account: EHTXF - Entact Souston Project: Chevron, Perth Amboy

File ID: TT040308M1.DAT Analyst: ND Parameters: Pb

Date Analyzed: 04/03/08 Run ID: MA20693

Methods: EPA 200.7, SW846 6010B

Tame	Sample Description	Istd # l
	22222	
	ZZZZZZ	
14:27	J85904-2A	69740
14:33	ZZ22Z3	6€934
14:39	MP43064-PS2	68315
14:45	MP43681~PS1	67797
14:52	222222	63836
14:58	MP43089-MB1	66015
15:04	MP43089-B1	66019
15:10	MA20693-CCV3	66278
15:26	MA20695-CCB4	66972
15:23	ZZZZZZ	67415
15:29	J85904~2A	65741
15:36	MP43089-S1	67638
15:42	MP43089-S2	88188
15:48	J86695~13	69€78
15:54	MP43089-SD1	67821
16:00	MA20693-CRIB2	67031
16:07	MA20693-CRIZ	67202
16:14	MA20693-ICSA2	63046
16:20	MA20693-ICSAB2	62822
;6:26	MA20693-5CV4	66755
16:33	MA20693-CCB5	66793
16:50	MP43113-MB1	63755
16:56	MP43113-B1	64336
17:02	MP43113-S1	63429
17:08	MP43113-S2	65175
17:15	J85843-1R	64132
17:21	MP43113-SD1	66070
17:27	Z2222Z	62922
17:33	222232	62082
17:39	ZZZZZZ	64991
17:45	MA20693-CCV5	66569

Login Number: J85904 Account: ESTXF - Entact Houston Project: Chevron, Perth Amboy

File 1D: 17040308M1.DAT Analyst: ND Parameters: Pb

Date Analyzed: 04/03/08 Run ID: MA20693

Methods: EPA 200.7, SW846 6010B

Para	ameters: Pb	
Time	Sample Description	lstd ‡ l
17:52	MA20693-CCB6	66620
17:58	ZZZZZZ	61281
18:04	22222	62983
18:10	22222	63428
18:16	ZZZZZZ	63639
18:23	MP431)4-MB1	64200
18:29	MP43114-B1	63215
18:35	MP43214-S1	65101
18:41	MP45114-62	65046
18:47	Ĵ86806~5	64882
18:53	MA20693-CCV6	65725
19:00	MA20693-CCB7	66945
19:06	MP43114-SD1	66721
19:12	222222	6368£
19:18	222222	63968
19:24	22222	67668
19:35	222222	64878
19:42	22222	66533
19:47	222222	65743
19:53	ZZZZZZ	65547
19:59	222222	66905
20:08	222222	65039
20:14	MA20693-CCV7	65885
20:20	MA20693-CCB8	67228
20:25	MP43115-MB1	67146
20:33	MP43315-201	65495
20:39	222222	67001
20:45	22222	67066
20:53	MP431004MB1	66042
20:59	MP43100-B1	66283
21:05	MP43100-SI	69640
21:11	MP42300-S2	69744
22:17	J87084-1	71331

Login Number: J85904 Account: EHEXF - Entatt Houston Project: Chevron, Perth Amboy

File 1D: 1T040308M1.DAT Analyst: NG Parameters: Pb

Dare Analyzed: 04/03/08 Run 1D: MAZ0693

Merhods: EPA 200.7, SW846 6010B

	ameters: Pb	
Time	Sample Destraption	lstd#1
21:73	MA20693-CCV8	66447
21:30	MA20693-CCB9	66705
21:36	MP43100-SD1	€8964
21:42	22222	72955
21:48	ZZZZZZ	72241
21:54	2222Z	69810
22:03	223223	69209
22:07	222222	69927
22:13	222232	73528
22:19	ZZZZZZ	73212
22:25	22222	69261
22:31	MA20693-CCV9	65414
22:38	MA20693-CC216	66154
22:46	Z	71279
22:52	ZZZZZZ	72738
22:59	MP43100-5D%	66769
23:05	22222	63670
23:11	227222	63157
23:23	222223	65310
23:47	MA20693-CR1B3	68148
23:53	MA20693-1CSA3	64275
00:00	MA20693-IC\$AB3	64862
00:06	MA20693-CCV10	68387
00:32	MA20693-CCB11	62544
00:18	ZZZZZZ	67843
£6:25	222222	67034
00:31	22222	66848
00:37	222222	71540
00:43	MA20693-CCV11	69644
00:49	MA20693-CCb12	71320
00:56	222322	72506
01:02	222222	72604
01:08	223222	72982

Login Number: J85904 Account: EHTXF - Entact Houston Project: Chevton, Perth Amboy

File 15: ST040308M1.OAT Analyst: ND Parameters: Pb

Date Analyzed: 04/03/08 Run ID: MA20693

Methods: EPA 200.7, SW846 6010B

Time	Sample Description	Ist3≇1
	ZZZZZZ	
	222222	
	222222	
	222222 222222	
	222222	
	222222	
	322222	
	MA20693-CCV12	
	MA20693-CCB13	
	22222	
02:16	272222	74295
02:22	222222	73555
02:28	222222	76388
02:34	ZZZZZZ	76542
02:40	22222	14799
02:47	22222	74491
02:53	Z2ZZZZ	74136
02;59	22222	72977
03:05	227,22	77198
03:11	MA20693-CCV13	70636
03:18	MA20693-CCB14	71415
03;24	222322	72758
03;30	22222	76141
03:36	222722	73266
03:42	222222	75978
03:48	222278	73798
03;55	232222	72792
04:01	222227,	77825
94:09	MP43036~MB3	71760
	MP43036-LC3	
	223222	
	MA20693~CCV14	
	MA20693-CCB15	

Login Number: J85904 Account: ESTXF - Entact Houston Project: Chevron, Perth Amboy

Patameters: Pb

Date Analyzed: 04/03/08

Methods: EPA 200.7, 5W846 6010B

File !D: 1T040308M2.DAT Analyst: ND Run 10: MAZ0593

Time	Sample Description	.std#i
04:40	MP43064-MB2	0205
04:46	MP43064-BZ	88334
64:52	MP43064-LC2	2219
04:58	NP43064-81	0316
05:04	NP43064-\$2	0761
05:10	386611-1	1587
05:17	MP43064~5D1	0064
05:23	222222	2269
05:29	22777	3218
05:35	MA20693-CCV15	8483
05:41	MA20693-CCB16	9536
05:48	222232	1723
05:54	ZZZZZZ	3256
06:00	Z2ZZZZ	2592
06:06	22222	3162
0€:12	22222	2186
06:18	MA20693~CCV16	8520
06:25	MA20693-CCB17	9327
07:34	MA20693-CR1B4	9123
07:40	MA20693-1CSA4	4657
07:46	MA20693-1CSAB4	4658
07:53	MAZ0693-CCV17	8038
07:59	MA20693-CCB18	9413
08:05	Z23 22 2	0263 !
R = Re	ference for IST1	limits. ! = Outside limits.
LEGEND		
lstd# Tstd#1	Parameter Yttriom	

Istd#1 Yttriom 60-125 €

BLANK RESULTS SUMMARY Part 1 \sim Initial and Continuing Calibration Blanks

Login Number: J85904 Account: EHTXF ~ Entact Houston Project: Chevros, Perth Amboy

File ID: IT040308M1.DAT QC Liming: result < RL

Data Analyzed: 04/03/08 Run 3D: MA20693 Meth4ds: EPA 200.7, SW846 6010B

Units: ug/l

Time: Sample ID: Metal	D.T.		12:04 ICB1		12:18 CCB1		12:51 CCB2		14:08 CCB3	
L	RL 300	ICT	raw	final	raw	final ————	raw	final	1a w	funal
Alumanum	200	26								
Antimany	6.D	r	anr							
Arsenic	8.0	4.2	anr							
Barium	200	, 3								
Beryllium	1.0	. 2	anr							
Cadmium	4.0	. 4	ānr							
Calcium	5 (30 0	85								
Chromium	10	. 9	anr							
Cobalt	50	<u>.</u> 1								
Copper	25	1.3	anr							
Iron	100	8.3								
Lead	3.0	2.7	~2.0	<3.0	~1.8	<3.0	~1.5	<3.0	~1.2	<20
Magnesium	5000	24	anr							
Manganese	15	. 4	anr							
Molybdenum	20	1.2								
Nackel	40	1.7	anı							
Palladium	50	5.8								
Poľassium	10000	66								
Selenium	10	3.8	anr							
Salicon	200	6.6								
Silver	10	1.5	anr							
5od;um	10000	480								
Thallium	10	5	ānr							
Tin	10	2.7								
Vanadium	50	1.6	anr							
Zinc	20	4.2	anr							

(*) Outside of QC limigs
(anr) Analyte not requested

Login Number: J85904 Actount: EHTXF - Enlact Houston Project: Theorem, Perth Amboy

File ID: IT040308M1.DAT QC Limits: result < RL

Date Analyzed: 04/03/08 Run ID: MA20693

Methods: EPA 200.7, SW846 6010B

Units: ug/1

Time: Sample ID: Metal	RL	IDL	1S:16 CCB4 raw	fina1	16:23 CCBS raw	fina!
Aluminum	200	26				11110+
Antimony	6.0	5.3	anr			
Ars e nic	8.0	4.2	an <i>r</i>			
Barıum	200	.3				
Beryll:um	1.0	,2	anr			
Cadmium	4.0	. 1	ahr			
Calcium	5090	85				
Chromium	10	. 9	anr			
Cobalt	50	1.1				
Copper	25	1.3	anr			
Iton	100	8.3				
Lead	2.0	2,7	1.2	<20	-3.2	<20
Magnesium	5000	24	anr			
Manganese	15	. 4	anr			
Molybdenum	29	1.2				
Nickel	40	1.7	anr			
Palladium	50	5.8				
Potassium	10000	66				
Selenium	10	3.9	anr			
Silicon	200	6.6				
Sìlver	10	1.5	anr			
Sodiem	10000	480				
Thall:um	10	5	anr			
Tin	10	2.7				
Vanadıum	50	1.6	anr			
Zinc	20	4.2				

(*) Outside of QC limits (ann) Analyze not requested

Login Number: J85964 Account: EHTXF - Entact Houston Project: Chevron, Perth ಸಮರಂಭ

File (D: IT040308M1.DAT QC Limits: 95 to 105 % Recovery

Date Analyzed: 04/03/08

Run ID: MAZ0693

Methods: EPA 200.7, SW846 6010B Units: ug/l

Time: Sample 15: Meta)		11:58 ICV1 Results	% Rec	#CV True	12:45 CCVl Results	% Rec	CCV	14:02 CUV2 Results	% Rec
Alaminum						****			···
Antimony	ar.r								
Arsenic	an≟								
Barium									
Beryllium	arr								
Cadmium	anr								
Calcium									
Chromium	ānr								
Cobait									
Copper	anr								
I∵on									
Lead	1000	990	99.0	2005	1990	99.5	2000	2030	101.5
Magnesium	anr								
Manganese	anr								
Molybdesom									
Nickel	anr								
Palladium									
Potassíum									
Selesium	anr								
Silıcon									
Silver	anr								
Sodium									
Thallium	anr								
Tir.									
Vanadium	anr								
2inc	anr								
(*) Outside of (anr) Analyte	QC limit	s sted							

Login Number: J85904 Afcount: EHTXF ~ Entact Houston Project: Chevron, Perth Amboy

File ID: IT040308ML.DAT QC Limits: 95 to 105 % Recovery

(ann) Analyte not requested

Date Amaiyzed: 04/03/08 Run 1D: MA20693

Methods: EPA 200.7, SW846 6010B Units: ug/l

Time: Sample II): Metal	CCV Troe	15:10 CCV3 Results	* Rec	CCV True	16:26 CCV4 Results	% Rec
Aluminum						
Antimony	anr					
Arsenic	anr					
Barium						
Beryllium	anr					
Cadmium	amr					
Calcium						
Cp.tow.rnw	anr					
Cobalt						
Copper	anr					
Iron						
Lead	2000	2030	101.5	2000	2020	101.0
Magnesium	anr					
Manganese	anr					
Molybdenum						
Nickel	anr					
Palladium						
Potassium						
Selenium	anr					
Silicon						
Silver	anr					
Sodium						
Thallium	anr					
Tin						
Vanadium	anr					
Zinç	anr					
(*) Outside of	QC limin	ts				

HIGH STANDARD CHECK SUMMARY

Login Number: J25904 Account: ERTXF + Entagt Houston Project: Theyron, Parth Amboy

File ID: IT040302Ml.DAT QC Limits: 95 to 105 % Recovery

Date Analysed: 04/03/08 Ran ID: MAS9693

Methods: EPA 200.7, SW846 6010B

Units: eg/l

Time: Sample ID: Metal	HSTD True	ll:39 HSTD2 Regulis	* Rec
Alumipum			
Antimony	an±		
Arsenic	ahr		
Barıwm			
B⊈ryllıum	anr		
Çadmırm	anr		
Calcium			
Chromium	any		
Cobalt			
Copper	anr		
Iron			
Lead	4000	3990	99.8
Magnesium	SUL		
Manganese	anr		
Molybdenum			
Nickel	anr		
Palladium			
Potassium			
Selemium	an±		
Silizon			
Silver	anı		
Sodium			
Thallium	anr		
Tin			
Vanadimm	anț		
Zinc	ahr		
(*) Outdide of (abr) Analyte	QC limit not reque	s sted	

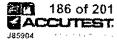
185 of 201 **CACCUTEST.**J85904

LOW CALIBRATION CHECK STANDARDS SUMMARY

Login Number: J85904 Account: EHTXF - Entact Hoiston Project: Cheuron, Perth Amboy

File ID: IT040308M1.DAT QC Limits: 50 to 150 % Recovery

Date Analyzed: 04/03/08 Run ID: MA20693


Methods: EPA 200.7, SW846 6010B Units: ug/l

Time: 11:52 12:26 16:07

Sample ID: CRI CRIA CRIAI CRII CRI2
ttal True True Pesulos 5 Rec Repults & Rec Repults & Rec

Sample ID:		CRIA True	CRIAL Pesulas & Rec	12:26 CRII Results f Rec	16:07 CRI2 Results % Rec	
Aluminum				·		
Antimony	120	3.0				
Arsenic	20	20				
Barıum	400					
Beryllıwm	10	2.0	anr			
Cadmium	16					
Salcium						
Chromium	20					
Cobait	£00					
Copper	50					
Iron						
Lead	6.0	6.0				
Magnesium						
Manganese	30					
Molybdenum	40					
Nitkel	82					
Palladium	100					
Potassium						
Selenium	20	10				
Silicon						
Silver	10					
Sodium						
Thallium	30	20				
Tin						
Vanadıum	100					
Zinç	40					

(*) Outside of QC limits (anr) Analyte not requested

INITIAL LOW CALIBRATION CHECK STANSARD SUMMARY

Login Number: J85904 Account: EHTXP - Entact Houston Project: Chevron, Perth Amboy

File JD: IT040308M1.DAT QC Limits: 50 to 150 % Recovery

Date Analyzed: U4/03/08 Run ID: MA20693

Methods: EPA 200.7, 5W846 6010B Units: ug/l

inum 400 mony 12 nic 16 oum 400 llium 2.5 ium 8.0
nic 16 em 400 llium 2.5
um 400 1lium 2.5
llium 2.5
ium 8.0
ium 5000
mium 20
lt 100
er 50
200
6.0 7.4 123.3 5.9 98.3
esium 5000
anese 30
odenum 40
el 80
adium 100
ssium 10000
nium 20
con 400
er 20
ım 10000
lium 20
20
lium 100
40

(*) Outside of QC limits (anr) Analyte not requested

INTERFERING ELSMENT CHECK STANDARDS QUMMARY Part 1 - (CSA and 109AB Standards

Login Number: J85904 Account: EHTXF - Entact Mouston Project: Chevron, Perth Amboy

File ID: IT040308M1.DAT QC Limits: 80 to 170 % Recovery

Date Analyzed: 04/03/08 Run ID: MA20693

Methods: EPA 200.7, SW846 6010B

Units: ug/l

								g / ±		
Time: Sample ID: Metal	ICSA True	IÇSAB True	12:32 ICSA1 Resulos	€ Rec	12:39 ICSAB1 Results	§ Rec	16:14 ICSA2 Results	۴ Rec	16:20 ICSAB2 Results	% Rec
Aluminum	500000	50000C	472000	94.4	465000	93.0	480000	96.0	473000	94.6
Antimony		1000	5.3		1040	104.0	0.57		1060	106.0
Arsenic		7000	6.0		1020	102.0	6.0		1040	104.0
Barium		500	0.94		519	103.8	1.1		524	104.8
Beryllıum		500	0.83		508	101.6	0.71		522	104,4
Cadmium		2000	2.7		977	97,7	3.2		1010	101.0
Calcium	400000	400000	386000	96.5	380000	95.0	398000	99.5	391000	97.8
Chromium		500	1.4		502	100.4	1.3		511	102.2
Cobalt		500	1.7		482	96.4	1.7		492	98.4
Copper		500	7.9		509	101.8	10.7		515	103.0
Iron	200000	200000	193000	96.5	192000	96.5	195000	97.5	195000	97.5
Lead		1000	0.0071		968	96.8	-2.0		998	99.8
Magnesium	500000	500000	510000	102.0	506000	101.2	518000	103.6	514050	102.8
Manganese		500	4.8		504	100.8	4.9		513	102.6
Mclybdenum		500	2.5		501	100.2	0.35		509	101.8
Níckel		1000	-0.59		936	93.6	-1.2		960	96.0
Palladium		500	4.0		515	103.0	5.2		524	104.8
Potassium			2440		2370		2610		∆550	
Selenium		1000	-4.0		984	98.4	-4.5		1000	100.0
Silicon			-110		-88		-100		-86	
Silver		1000	0.14		1050	105.0	0.72		1060	106.0
Sodium			-250		-490		-150		-550	
Thallium		1000	11.0		1610	103.0	-3.4		1000	100.0
Tin			-5.3		-8.0		-7,5		-7.3	
Vanadium		560	-ū.57		494	98.8	-ĕ.98		495	99.0
ບົຣຸ່ກຊ		1000	-6.5		965	96.6	-7.3		984	98.4

(*) Outside of QC limits (anr) Analyte not requested

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: J85904 Account: EHTXF - Entact Houston Project: Chevnon, Perth Amboy

QC Batch ID: MP43029 Matrix Type: LEACHATE Methods: SW846 60102 Units: mg/l

03/273/38

Prep	: Da	t e	
T T C F	, Da	r.c	

Metal	ŘL	ĭDL	MB raw	finaí
Aluminum	0,20	.026		
Antimony	0.20	.0053		
Arsenic	0.50	.0042	anr	
Barium	1.0	.0003	anr	
Beryllium	0.0050	.0002		
Cadmium	0.0050	.0094	anr	
Calcium	5.0	.085		
Chromaum	0.010	.0009	anr	
Cobalt	0.050	.0011		
Copper	0.025	.0013		
Iren	0.10	.0083		
Lead	0.50	.0027	0.0074	<0.50
Magnesíum	5.0	.024		
Manganese	0.015	.0004		
Mnlybdenum	0.210	.0012		
Nuckel	0.040	.0017		
Pažladium	0.010	.0058		
Potassium	10	.066		
Selenium	9.50	.0039	anr	
Silıcon	0.20	.0066		
Silver	0.010	.0015	anr	
Sodium	5.0	.48		
Thalliom	0.20	.005		
Tin	0.010	.0027		
Vanadium	0.050	.0016		
Zinc	0.10	.0042		

Associated samples MP43029: J85904-IA, J85904-2A

Results < IDL are shown as fero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: 385904 Account: EHTXF - Entact Houston Project: Chevron, Perth Amboy

QC Batch ID: MP43029 Matrix Type: LEACHATE

(anr) Analyte not requested

Methods: SW846 6010B Units: mg/l

Prep Date:

03/27/08

Metal	185287-137A Original MS	SpikeJot MPITCLP1 9	Rec	QC Limits
Aluminum				
Antimony				
Arsenic	anr			
Barium	anr			
Beryllıum				
Cadmium	anr			
Calcium				
Chromium	anr			
Cobalt				
Copper				
Iron				
Lead	0.0064 2.1	2.0 10	94.6	75-125
Magnesium				
Manganese				
Molybdenum				
Nickel				
Palladium				
Potassium				
Selenium	an≓			
Silıcon				
Silver	anr			
Sodium				
ThalIium				
Tin				
Vanadium				
Zine				
Associated sar	nples MP43029: J	85904~1A, J8590	4-ZA	
Results < IDL (*) Outside of (N) Mazrix Spi	are shown as ze	≄o fo≍ caĭculat		tposes

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Logan Number: J85964 Account: ESTXF - Entact Houston Project: Chevron, Perth Ambay

QC Batch ID: MP430Z9 Matrix Type: LSACHATE

Methoda: 5W846 6010B Units: mg/l

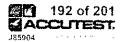
Prep Date:

03/25/08

Metal	J#5287-137A Oraganal MSD	Spikelot MPITCLPl % Ret	MSD RPD	©C Làmit		
Aluminum						
Antimony						
Arsenic	arı					
Barıum	anr					
Beryllium						
Cadmium	anr					
CaJcium						
Chromium	anr					
Cobalt						
Copper						
Iron						
Lead	0.0064 2.2	2.0 109.6	0.0	25		
Magnesium						
Manganese						
Molybdenum						
Nickel						
Palladíum						
Potassium						
Selenium	anr					
Silicon						
Siìver	anr					
Sodíum						
Thallium						
Tin						
Vanadıum						
Zinc						
Associated sam	nples MP43029: 585	904-1A, J85904-2A				
(*) Outside of IN) Matrix Spi	are shown as zero FQC limits ike Rec. outside o not requested	for calculation pu	orposes			

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: J85904 Account: DSTXF - Entact Nouston Project: Chevron, Perth Amboy


QC Batch ID: MP43029 Matrix Type: 1.6ACNATE

Methods: SW846 6010B Units: mg/l

Prep Date:

03/27/08

Metal	BSP Result	Spikelo: MPITCLP:	c l % Rec	QC Simits
Aluminum				
Antimony				
Arsenic	anr			
Barium	anr			
Beryllıum				
Cadmium	anr			
Calcium				
Chromium	anı			
Cobalt				
Copper				
Iron				
Lead	2.2	2.0	110.0	20-120
Magnesiam				
Manganese				
Molybdenum				
Nickel				
Palladium				
Potassium				
Selenium	anr			
Silicon				
Silver	anr			
Sodium				
Thallium				
Tir.				
Vanadium				
2inc				
Associated saπ	ples MP43	û29: J859	04-1A, J8	35904-2A
Results < IDL (*) Outside of (anr) Analyte	QC limit	S	for calcu	ulation purposes

SEPIAL SIDUTION RESULTS SUMMARY

Login Number: J85904 Account: EHTXF - Entact Houston Project: Chevron, Perth Amboy

QC Batch ID: MP43029 Matrix Type: LEACHATE

Methods: SW846 60105

Units: ug/l

Frep Date:

03/27/08

Metal	J85287-137A Original SDL 1:5	RPD	QC Limits	
Aluminum				
Antimosy				
Arsebic	anr			
Barlum	anr			
Beryllium				
Cadmium	ān <i>ī</i>			
Calcium				
Chromaum	anr			
Cobalt				
Copper				
Iron				
Lead	6.42 0.00	100.0(a)	0-10	
Magnesium				
Manganese				
Molybdenum				
Nickel				
Palladium				
Polassium				
Selenium	anr			
Silicon				
Silver	anr			
Sod; um				
Thallium				
T'ir,				
Vasadıum				
2inc				
Associated sam	pies MP43029: J8590	4-1A, 589	904-2A	
(*) Outside of (anr) Analyte	not requested		ation purposes ow initial sample concentration (< 50 times IDL).	

Login Number: J85904 Account: EMTXF - Entact Houston Project: Chevron, Perth Amboy

QC Batch 1D: MP4304Z Matrix Type: 30170

Methods: \$W846 60108 Units: mg/kg

Prep Sate:				03/28/0	8	04/01/08
Metal	Rí	IDL	MB raw	final	MB Jaw	[inal
Alaminum	20	2.6	an:			
Antimony	1.0	.34	anr			
Arsenic	2,0	.12	anr			
Barıum	20	.03	anr			
Beryllium	0.50	.01	anr			
Boron	10	.15				
Cadmium	0.50	.04	anr			
Calcium	500	3.1	anr			
Chromium	1.0	.03	anr			
Cobalt	5.0	.03	anr			
Copper	2.5	.13	anr			
Iron	10	.83	anr			
Lead	2.0	.12			~0.18	<2.0
Magnesium	500	2.4	enr			
Manganege	1.5	.01	anı			
Molybdenum	2.0	.04				
Nickel	4,0	.03	anr			
Palladium	5.0	. 3				
Potassium	1000	5	anı			
Seleníum	2.0	.1%	anr			
Silicon	20	.36				
Silver	1.0	.06	anr			
Sodium	1000	.9	anr			
Strontium	1.0	.01				
Thallium	1.0	.08	anr			
Tín	5.0	.08				
Titanjum	1.0	.03				
Vanadium	5.0	.04	anr			
Zinc	2.0	.7	anr			

Associated samples MP43042: J85904-1, J85904-2

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: J85904 Account: EHTXF - Entatt Houston Project: Chevron, Perth Amboy

QC Batch ID: MP43042 Matrix Type: SOLID

Methods: SW846 6010B Units: mg/kg

Prep Date:

04/01/08

TTUP Date.					;
Metal	286496-1 Orag)nal		Spikelo MPIRSi	t % Rec	QC Limits
Aluminum	anr				
Antimony	anr				
Arsenic	anr				
Barìum	anr				
Seryllium	anr				
Boron					
Cadmium	anr				
Calcium	anr				
Chromium	anr				
Cobalt	anr				
Copper	anr				
lron	anr				
Lead	263	323	108	65.0M(a)	75-125
Magnesium	ang				
Manganese	anr				
Molybdenam					
Nickel	anz				
Pal;adium					
Potassium	anı				
Selenium	anr				
Sillcon				,	
Silver	anr				
Sodium	anr				
Strontium					
Thallium	anr				
Tin					
Titamium					
Vanadium	anı				
Ziqc	anr				
Associated sam	nples MP450	042: J85	5⊋04-1, J859	904-2	

Results < IDS are shown as zero for calculation purposes

(*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits

(anr) Analyte not requested

(a) Spike recovery indicates possible matrix interference and/or sample nonhomogeneity.

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: 385904 Account: EMTXF - Entact Receson Project: Chevron, Perth Amboy

QC Batch ID: MP43042 Matrix Type: SOLID

Nethods: SW846 601/1B Units: mg/kg

Prep Date:

04/01/08

Metal	J86496-1 Original	MSl	Spake)o MPIRS?	t Fikec	MSD %PD	QC Limit
Aluminum	anr					
Antimony	ahr					
Assenit	anr					
Barıum	anr					
Beryllium	anr					
Boron						
Cadmıum	anr					
Caltium	anr					
Chromium	anr					
Cobalt	anr					
Copper	anr					
Iron	anr					
Lead	265	372	107	102.2	11.1	20
Magnesium	anr					
Manganese	anr					
Molybdenum						
Nickel	anr					
Palladium						
Potassium	anr					
3elenium	ans					
Silicon						
5ilver	anr					
Sodium	anr					
5trontium						
Thallium	anr					
Ti.						
Titanium						
Vanadıum	anr					
Zinc	anr					
Associated sam		47: TR50	04-1595	9 ∩4 - 2		

Results < ID% are shown as zero for calculation purposes (*) Outside of QC limits
(N) Matrix Spike Rec. outside of QC limits
(anr) Analyte not requested

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: J85904 Account: ERTXF - Entact Houston Project: Chevron, Perth Amboy

QC Batch ID: MP43042 Matrix Type: SOLID

Methods: SW846 6010B Units: mg/kg

Prep Date:

93/28/08

03/18/08

Metal	BSB Result	Spikelot MPIRS1	t Ret	QC Limits	LCS Result	Spikelor MPLC56540% Rec	QC Limits	
Aluminum	anr					111 00 00 1 NeC	31111212	
Antimony	anr							
Arsenic	anr							
Barlum	anr							
Beryllium	anr							
Boron								
Cadmium	anr							
Calcium	anr							
Chromium	anı							
Cobalt	anr							
Copper	anr							
Iron	anr							
Lead								
Magnesium	anr							
Mangariese	arır							
Molybdenam								
Nickel	anr							
Palladium								
Potassium	anr							
Selenium	arır							
Silícon								
Silver	anr							
Sodium	ānī							
Strontium								
Thallium	şnı							
Tín								
Titaninm								
Vanadıum	anr							
Zinc	an≽							
Associated sam	ples MP43	047: 385904	-1, J85	904-2				
Results < IDL (*) Outside of (anr) Analyte	QC limit	S	r calcu	lation pu	rptses			

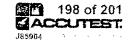
SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: J85984 Artount: EHTXF + Entart Houston Project: Chevron, Perth Amboy

QC Batch ID: MP47042 Matrix Type: SOLID

Methods: SW846 6010B Units: mg/kg

Prep Late:


04/01/08

04/01/08

	B S D	Cmile-1e-		0.7	1.00		3470,70	
Metal	ESP Result	Spikelot MP10S2	A Rec	QC Lımiçs	LCS Result	Spikelo MPLC565	t 40∻ Feç	QC Limirş
Aluminum	anr				·-			<u></u>
Antimony	anc							
Apsenip	anr							
Barium	anr							
Beryllium	ang							
Boron								
Cadmium	anr							
Çalçíum	anr							
Chromjum	anr							
Cobalt	anr							
Copper	anr							
Iron	anr							
Lead	99.5	100	99.5	80-150	81.0	72.2	112.2	8Zr118
Magnesium	anr							
Manganese	anr							
Molybdenum								
Nickel	anr							
Pa:lwdium								
Potasęjum	anţ							
Sel∉nium	anr							
Siļi¢on								
Silver	ang							
Sodium	anr							
Stronçıum								
Thallium	anŗ							
Tin								
Tiţan:um								
Vanadism	anr							
Zinc	anr							
Associated Bamp	lea MP431)42: J8590	4-1, J859	04-2				

Page 2

Results < IDL are shown as term for calculation purposes (4) Outside of QC limits (ann) Analyte not requested

SERIAL DILUTION RESULTS SUMMARY

Login Number: J25904 Account: EHTXF - Entact Housion Project: Chevron, Perth Amboy

QC Batch ID: MP43042 Matrix Type: SOLIO

Methods: SW846 6019B Units: og/l

Prep Date:

04/01/08

r			04/01/6	04/01/08	
Metal	J86496-1 Original	EDL 1:5	RPD	QC Limits	
Aluminum	anr				
Antimony	anr				
Arsenic	anr				
Barium	anr				
Beryllium	anr				
Boron					
Cadmium	anı				
Calcium	anr				
Chromium	anr				
Cobalt	ānī				
Copper	anr				
Iron	anr				
Lead	2420	2650	9.7	0~10	
Magnesium	anr				
Manganese	anr				
Molybdenum					
Nickel	anr				
Palladium					
Potassium	anr				
Selenium	anr				
Silicon					
Salver	anr				
Sodíum	an÷				
Strontium					
Thallıum	anr				
\[in					
Titanium					
Vanadıum	anr				
2 3 102	anr				
Associated samp	ples MP430	42: J8590	4-1, J85	904-2	

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Amalyte not requested

General Chemistry	
QC Data Summaries	
Includes the following where applicable: • Percent Solids Raw Data Summary	

Percent Solids Raw Data Summary
Job Number: J85904
Account: EHTXF Entact Houston
Project: Chevron, Perth Amboy

Sample: J85904-1 ClientID: S2197RB2	Analyzed: 01-APR-08 by TS	Method: EPA 160.3 M
Wet Weight (Total) Tare Weight Dry Weight (Total) Moisture, Percent	25.12 g 19.79 g 24.54 g 10.9 %	
Sample: J85904-2 ClientID: S2387RF4	Analyzed: 01-APR-08 by TS	Method: EPA 160.3 M
Wet Weight (Total) Tare Weight Dry Weight (Total) Moisture, Percent	25.9 g 20.62 g 24.57 g 25.2 %	

APPENDIX B: LABORATORY BENCH DATA

	Project	CVX108 Perth Amboy
MOISTURE /SOLIDS CONTENT WORKSHEET	Date	4/11/2008
	Technician	Maggie Benningfield

	Sample ID	S2197RB2					
			Container Tare (g)	4.1			
			Container + Sample (g)	232.2			
			Initial Sample (g) [W _T]	228.10			
No	Date	Time	Temp	Container + Sample (g)			
1	4/11/2008	1110	110	232.2			

No	Date	Time	Temp	Container + Sample (g)
1	4/11/2008	1110	110	232.2
2	4/11/2008	1417	110	207.6
3	4/11/2008	1651	110	207.3
4	4/12/2008	800	112	207.1
5	4/12/2008	1000	110	207.0
6	4/12/2008	1430	110	207.0
		Final	207.00	
			Mass of Solids (g) $[W_D]$	202.90
			Mass of Water (g) [W _W]	25.20
		Moistu	12.42%	
			88.95%	
		C	% Moisture (%) [W _W /W _T]	11.05%

Sample ID	S2387RF4

Container Tare (g)	4.2
Container + Sample (g)	222.7
Initial Sample (g) [W _T]	218.50

No	Date	Time	Temp	Container + Sample (g)				
1	4/11/2008	1100	110	222.7				
2	4/11/2008	1416	110	181.6				
3	4/11/2008	1650	110	169.1				
4	4/12/2008	800	112	168.2				
5	4/12/2008	1000	110	168.2				
6	4/12/2008	1430	110	168.2				
		Final Container + Sample (g)						
		Mass of Solids (g) [W _D]						
		Mass of Water (g) [W _w]						
		33.23%						
			% Solids (%) [W _D /W _T]	75.06%				
		C	% Moisture (%) [W _W /W _T]	24.94%				

CVX 108	Date	4/11/2	800	
Perth Amboy	Page	1	of	1

BULK DENSITY WORK SHEET

Volume of Cup (V_C) = 90 cm³

	Α	В	С	D	E	F
Sample ID / Description	Gross Weight (grams)	Cup Tare (grams)	Net Weight [A-B] (grams)	Cup Density [C/V _C] (g/cm³)	Specific Gravity	Bulk Density [Ex62.4] (pcf)
S2387RF4	167	2.6	164.4	1.8267	1.8267	113.99
S2197RB2	145.4	2.5	142.9	1.5878	1.5878	99.08

ENTACT CVX 108 Date 4/14/08 Perth Amboy Page 1 of 1

Sample Number	Sample Material	Reagent
S2387RF4-Raw	956g	None
S2387RF4-TSP5-41408	1128g	TSP - 56.4g
S2387RF4-TSP10-41408	1048g	TSP - 104.8g
S2387RF4-Enviblend5-41408	456g	Enviroblend 80/20 22.8g
S2387RF4-Enviblend10-41408	470g	Enviroblend 80/20 22.4g
S2197RB2-Raw	564g	None
S2197RB2-TSP5-41408	554g	TSP - 27.7
S2197RB2-TSP10-41408	664g	TSP - 66.4
S2197RB2-Enviblend5-41408	506g	Enviroblend 80/20 25.3
S2197RB2-Enviblend7.5-41408	408g	Enviroblend 80/20 30.6

Sample Number	Sample Material	Reagent
S2387RF4-Redoxite5-42308	574g	Redoxite 28.7g
S2387RF4- Redoxite10-42308	456g	Redoxite 45.6g
S2197RB2- Redoxite5-42308	498g	Redoxite 24.9g
S2197RB2- Redoxite10-42308	492g	Redoxite 49.2g

APPENDIX C: INDEPENDENT ANALITICAL LABORATORY REPORTS

ANALYTICAL RESULTS

Prepared for:

Chevron 1200 State Street Perth Amboy NJ 08861

Prepared by: Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 1086602. Samples arrived at the laboratory on Tuesday, Apr 15 2008. The project for this group is CVX 108 Perth Amboy.

The PO# for this sample group is 0015010693.

The release number for this sample group is LAVORERIO.

Sample No. C	Collected	Client Description
5333118	4/14/2008	S2197RB2 Contaminated Soil Sample
		CVX 108 Perth Amboy
5333137	4/14/2008	S2387RF4-Enviblend10-41408 Soil + 10% Enviroblend
		80/20 Sample TCLP NON-VOLATILE EXTRACTION
		CVX 108 Perth Amboy
5333120	4/14/2008	S2197RB2-TSP5-41408 Soil + 5% TSP Sample
		CVX 108 Perth Amboy
5333121	4/14/2008	S2197RB2-TSP5-41408 Soil + 5% TSP Sample
		TCLP NON-VOLATILE EXTRACTION
		CVX 108 Perth Amboy
5333122	4/14/2008	S2197RB2-TSP10-41408 Soil + 10% TSP Sample
		CVX 108 Perth Amboy
5333123	4/14/2008	S2197RB2-TSP10-41408 Soil + 10% TSP Sample
		TCLP NON-VOLATILE EXTRACTION
		CVX 108 Perth Amboy
5333124	4/14/2008	S2197RB2-Enviblend_5-41408 Soil + 5% Enviroblend
		80/20 Sample
		CVX 108 Perth Amboy
5333125	4/14/2008	S2197RB2-Enviblend_5-41408 Soil + 5% Enviroblend
		80/20 Sample TCLP NON-VOLATILE EXTRACTION
		CVX 108 Perth Amboy
5333126	4/14/2008	S2197RB2-Enviblend7.5-41408 Soil + 7.5%
		Enviroblend 80/20 Sample
		CVX 108 Perth Amboy
5333127	4/14/2008	S2197RB2-Enviblend7.5-41408 Soil + 7.5%
		Enviroblend 80/20 TCLP NON-VOLATILE EXTRACTION

ANALYTICAL RESULTS

Prepared for:

Chevron 1200 State Street Perth Amboy NJ 08861

Prepared by: Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

		CVX 108 Perth Amboy
5333128	4/14/2008	S2387RF4-Raw Contaminated Soil Sample
		CVX 108 Perth Amboy
5333129	4/14/2008	S2387RF4-Raw Contaminated Soil Sample
		TCLP NON-VOLATILE EXTRACTION
		CVX 108 Perth Amboy
5333130	4/14/2008	S2387RF4-TSP5-41408 Soil + 5% TSP Sample
		CVX 108 Perth Amboy
5333131	4/14/2008	S2387RF4-TSP5-41408 Soil + 5% TSP Sample
		TCLP NON-VOLATILE EXTRACTION
		CVX 108 Perth Amboy
5333132	4/14/2008	S2387RF4-TSP10-41408 Soil + 10% TSP Sample
		CVX 108 Perth Amboy
5333133	4/14/2008	S2387RF4-TSP10-41408 Soil + 10% TSP Sample
		TCLP NON-VOLATILE EXTRACTION
		CVX 108 Perth Amboy
5333134	4/14/2008	S2387RF4-Enviblend_5-41408 Soil + 5% Enviroblend
		80/20 Sample
		CVX 108 Perth Amboy
5333135	4/14/2008	S2387RF4-Enviblend_5-41408 Soil + 5% Enviroblend
		80/20 Sample TCLP NON-VOLATILE EXTRACTION
		CVX 108 Perth Amboy
5333136	4/14/2008	S2387RF4-Enviblend10-41408 Soil + 10% Enviroblend
		80/20 Sample
		CVX 108 Perth Amboy
5333119	4/14/2008	S2197RB2 Contaminated Soil Sample
		TCLP NON-VOLATILE EXTRACTION
		CVX 108 Perth Amboy

METHODOLOGY

The specified methodologies used in obtaining the enclosed analytical results are indicated on the laboratory chronicle.

ELECTRONIC COPY TO URS Corporation Attn: Jerry Vorbach 1 COPY TO Data Package Group

ANALYTICAL RESULTS

Prepared for:

Chevron 1200 State Street Perth Amboy NJ 08861

Prepared by: Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

1 COPY TO ENTACT HOUSTON Attn: Maggie Benningfield

Questions? Contact your Client Services Representative Wendy A Kozma at (717)656-2300

Respectfully Submitted,

had Moline

Chad A. Moline Group Leader

Chevron Project: CVX 108 Perth Amboy

SDG: RFQ95

Report Date: 5/9/2008 8:42 Submit Date: 4/15/2008 9:40

		5333118		5333120		5333122	
Analysis Name	Units	S2197RB2	MDL	S2197RB2	MDL	S2197RB2	MDL
		Result		Result		Result	
Lead	ug/kg	1,560,000.	2,710.	1,510,000.	2,840.	572,000.	546.
Moisture	%	9.6	0.50	14.5	0.50	12.9	0.50
tetraethyl lead	ug/kg	150. J	74.	150. J	78.	110. J	77.
		5333124		5333126		5333128	
Analysis Name	Units	S2197RB2	MDL	S2197RB2	MDL	S2387RF4	MDL
		Result		Result		Result	
Lead	ug/kg	1,070,000.	535.	872,000.	545.1	43,000,000.	127,000.
Moisture	%	10.2	0.50	11.0	0.50	23.5	0.50
tetraethyl lead	ug/kg	150. J	74.	100. J	75.	1,300.	87.
		5333130		5333132		5333134	
Analysis Name	Units	S2387RF4	MDL	S2387RF4	MDL	S2387RF4	MDL
, many old i tame		Result	2_	Result		Result	2
Lead	ug/kg	144,000,000.	129,000.	126,000,000.	63,100.1	15,000,000.	59,900.
Moisture	%	24.5	0.50	24.6	0.50	19.8	0.50
tetraethyl lead	ug/kg	1,300.	88.	1,700.	88.	1,400.	83.
		5333136					
Analysis Name	Units	S2387RF4					
Analysis Name	Offics	Result	MDL				
Lead	ug/kg	97,200,000.	59,400.				
Moisture	%	18.3	0.50				
tetraethyl lead	ug/kg	1,600.	410.				
totractifyricad	ug/kg	1,000.	410.				
		5333119		5333121		5333123	
Analysis Name	Units	S2197RB2	MDL	S2197RB2	MDL	S2197RB2	MDL
		Result		Result		Result	
Lead	mg/l	0.312	0.0069	N.D.	0.0069	0.0141 J	0.0069
		5333125		5333127		5333129	
Analysis Name	Units	S2197RB2	MDL	S2197RB2	MDL	S2387RF4	MDL
		Result		Result		Result	
Lead	mg/l	N.D.	0.0069	N.D.	0.0069	1,530.	1.38
		E222424		E000400		E22242E	
Analysis Nama	Lloito	5333131	MDI	5333133	MDI	5333135	MDI
Analysis Name	Units	S2387RF4 Result	MDL	S2387RF4 Result	MDL	S2387RF4 Result	MDL
Lead	mg/l	271.	0.345	0.155	0.0069	0.740	0.0069
		5000407					
Analysis Name	Linite	5333137					
Analysis Name	Units	S2387RF4					

Chevron Project: CVX 108 Perth Amboy SDG: RFQ95

Report Date: 5/9/2008 8:42 Submit Date: 4/15/2008 9:40

Result MDL

Lead 1.07 0.0069 mg/l

CAT No.	Analysis Name	Method	Trial ID	Analysis Date/Time	Analyst	Diluti	on
5333118	3 S2197RB2 Contaminated Soil Sam	ple					
06955	Lead	SW-846 6010B	1	4/22/08 0033	Choon Y Tian		5
00111	Moisture	SM20 2540 G	1	4/17/08 1534	Scott W Freisher		1
04221	Organolead in Soil by GC/MS	SW-846 8270C	1	4/24/08 1803	Gregory J Drahovsky		1
00381	BNA Soil Extraction	SW-846 3550B		4/24/08 0815	Kerrie A Freeburn		1
05708	SW SW846 ICP Digest	SW-846 3050B	1	4/16/08 2105	Annamaria Stipkovits		1
5333119	9 S2197RB2 Contaminated Soil Sam	ple					
07055	Lead	SW-846 6010B	1	4/26/08 1022	Joanne M Gates		1
00947	TCLP Non-volatile Extraction	SW-846 1311	1	4/22/08 1240	Jeremy L Weaver	n.a.	
05705	WW/TL SW 846 ICP Digest (tot)	SW-846 3010A	1	4/23/08 1922	James L Mertz		1
5333120) S2197RB2-TSP5-41408 Soil + 5% T	SP Sample					
06955	Lead	SW-846 6010B	1	4/22/08 0051	Choon Y Tian		5
00111	Moisture	SM20 2540 G	1	4/17/08 1534	Scott W Freisher		1
04221	Organolead in Soil by GC/MS	SW-846 8270C	1	4/24/08 1915	Gregory J Drahovsky		1
00381	BNA Soil Extraction	SW-846 3550B	1	4/24/08 0815	Kerrie A Freeburn		1
05708	SW SW846 ICP Digest	SW-846 3050B	1	4/16/08 2105	Annamaria Stipkovits		1
5333121	1 S2197RB2-TSP5-41408 Soil + 5% T	SP Sample					
07055	Lead	SW-846 6010B	1	4/26/08 1033	Joanne M Gates		1
00947	TCLP Non-volatile Extraction	SW-846 1311	1	4/22/08 1240	Jeremy L Weaver	n.a.	
05705	WW/TL SW 846 ICP Digest (tot)	SW-846 3010A	1	4/23/08 1922	James L Mertz		1
5333122	2 S2197RB2-TSP10-41408 Soil + 10%	TSP Sample					
06955	Lead	SW-846 6010B	1	4/22/08 0054	Choon Y Tian		1
00111	Moisture	SM20 2540 G	1	4/17/08 1534	Scott W Freisher		1
04221	Organolead in Soil by GC/MS	SW-846 8270C	1	4/24/08 1940	Gregory J Drahovsky		1
00381	BNA Soil Extraction	SW-846 3550B	1	4/24/08 0815	Kerrie A Freeburn		1
05708	SW SW846 ICP Digest	SW-846 3050B	1	4/16/08 2105	Annamaria Stipkovits		1
5333123	3 S2197RB2-TSP10-41408 Soil + 10%	TSP Sample					
07055	Lead	SW-846 6010B	1	4/26/08 1037	Joanne M Gates		1
00947	TCLP Non-volatile Extraction	SW-846 1311	1	4/22/08 1240	Jeremy L Weaver	n.a.	
05705	WW/TL SW 846 ICP Digest (tot)	SW-846 3010A	1	4/23/08 1922	James L Mertz		1
5333124	4 S2197RB2-Enviblend_5-41408 Soil	+ 5% Enviroblend					
06955	Lead	SW-846 6010B	1	4/22/08 0104	Choon Y Tian		1
00111	Moisture	SM20 2540 G	1	4/17/08 1534	Scott W Freisher		1
04221	Organolead in Soil by GC/MS	SW-846 8270C	1	4/24/08 2004	Gregory J Drahovsky		1
00381	BNA Soil Extraction	SW-846 3550B	1	4/24/08 0815	Kerrie A Freeburn		1
05708	SW SW846 ICP Digest	SW-846 3050B	1	4/16/08 2105	Annamaria Stipkovits		1
5333125	5 S2197RB2-Enviblend_5-41408 Soil	+ 5% Enviroblend					
07055	Lead	SW-846 6010B	1	4/26/08 1040	Joanne M Gates		1
00947	TCLP Non-volatile Extraction	SW-846 1311	1	4/22/08 1240	Jeremy L Weaver	n.a.	
05705	WW/TL SW 846 ICP Digest (tot)	SW-846 3010A	1	4/23/08 1922	James L Mertz		1

CAT No.	Analysis Name	Method	Trial ID	Analysis Date/Time	Analyst	Dilu	tion
5333126	S2197RB2-Enviblend7.5-41408 Soi	I + 7.5%					
06955	Lead	SW-846 6010B	1	4/22/08 0107	Choon Y Tian		1
00111	Moisture	SM20 2540 G	1	4/17/08 1534	Scott W Freisher		1
04221	Organolead in Soil by GC/MS	SW-846 8270C	1	4/24/08 2028	Gregory J Drahovsky		1
00381	BNA Soil Extraction	SW-846 3550B	1	4/24/08 0815	Kerrie A Freeburn		1
05708	SW SW846 ICP Digest	SW-846 3050B	1	4/16/08 2105	Annamaria Stipkovits		1
5333127	⁷ S2197RB2-Enviblend7.5-41408 Soi	I + 7.5%					
07055	Lead	SW-846 6010B	1	4/26/08 1044	Joanne M Gates		1
00947	TCLP Non-volatile Extraction	SW-846 1311	1	4/22/08 1240	Jeremy L Weaver	n.a.	
05705	WW/TL SW 846 ICP Digest (tot)	SW-846 3010A	1	4/23/08 1922	James L Mertz		1
5333128	S S2387RF4-Raw Contaminated Soil	Sample					
06955	Lead	SW-846 6010B	1	4/25/08 0425	Choon Y Tian		200
00111	Moisture	SM20 2540 G	1	4/17/08 1534	Scott W Freisher		1
04221	Organolead in Soil by GC/MS	SW-846 8270C	1	4/24/08 2052	Gregory J Drahovsky		1
00381	BNA Soil Extraction	SW-846 3550B	1	4/24/08 0815	Kerrie A Freeburn		1
05708	SW SW846 ICP Digest	SW-846 3050B	1	4/16/08 2105	Annamaria Stipkovits		1
5333129	S2387RF4-Raw Contaminated Soil	Sample					
07055	Lead	SW-846 6010B	1	4/26/08 1048	Joanne M Gates		200
00947	TCLP Non-volatile Extraction	SW-846 1311	1	4/22/08 1240	Jeremy L Weaver	n.a.	
05705	WW/TL SW 846 ICP Digest (tot)	SW-846 3010A	1	4/23/08 1922	James L Mertz		1
5333130	S2387RF4-TSP5-41408 Soil + 5% T	SP Sample					
06955	Lead	SW-846 6010B	1	4/25/08 0429	Choon Y Tian		200
00111	Moisture	SM20 2540 G	1	4/17/08 1534	Scott W Freisher		1
04221	Organolead in Soil by GC/MS	SW-846 8270C	1	4/24/08 2116	Gregory J Drahovsky		1
00381	BNA Soil Extraction	SW-846 3550B		4/24/08 0815	Kerrie A Freeburn		1
05708	SW SW846 ICP Digest	SW-846 3050B	1	4/16/08 2105	Annamaria Stipkovits		1
5333131	S2387RF4-TSP5-41408 Soil + 5% T	SP Sample					
07055	Lead	SW-846 6010B	1	4/26/08 1001	Joanne M Gates		50
00947	TCLP Non-volatile Extraction	SW-846 1311	1	4/22/08 1240	Jeremy L Weaver	n.a.	
05705	WW/TL SW 846 ICP Digest (tot)	SW-846 3010A	1	4/23/08 1922	James L Mertz		1
	2 S2387RF4-TSP10-41408 Soil + 10%	TSP Sample					
06955	Lead	SW-846 6010B	1	4/22/08 0116	Choon Y Tian		100
00111	Moisture	SM20 2540 G	1	4/17/08 1534	Scott W Freisher		1
04221	Organolead in Soil by GC/MS	SW-846 8270C	1	4/24/08 2140	Gregory J Drahovsky		1
00381	BNA Soil Extraction	SW-846 3550B	1	4/24/08 0815	Kerrie A Freeburn		1
05708	SW SW846 ICP Digest	SW-846 3050B	1	4/16/08 2105	Annamaria Stipkovits		1
	S2387RF4-TSP10-41408 Soil + 10%	•					
07055	Lead	SW-846 6010B		4/26/08 1051	Joanne M Gates		1
00947	TCLP Non-volatile Extraction	SW-846 1311		4/22/08 1240	Jeremy L Weaver	n.a.	
05705	WW/TL SW 846 ICP Digest (tot)	SW-846 3010A	1	4/23/08 1922	James L Mertz		1

CAT			Trial	Analysis		
No.	Analysis Name	Method	ID	Date/Time	Analyst	Dilution
533313	4 S2387RF4-Enviblend_5-41408 So	il + 5% Enviroblend				
06955	Lead	SW-846 6010B	1	4/22/08 0119	Choon Y Tian	100
00111	Moisture	SM20 2540 G	1	4/17/08 1534	Scott W Freisher	1
04221	Organolead in Soil by GC/MS	SW-846 8270C	1	4/24/08 2205	Gregory J Drahovsky	1
00381	BNA Soil Extraction	SW-846 3550B	1	4/24/08 0815	Kerrie A Freeburn	1
05708	SW SW846 ICP Digest	SW-846 3050B	1	4/16/08 2105	Annamaria Stipkovits	1
533313	5 S2387RF4-Enviblend_5-41408 So	il + 5% Enviroblend				
07055	Lead	SW-846 6010B	1	4/26/08 1055	Joanne M Gates	1
00947	TCLP Non-volatile Extraction	SW-846 1311	1	4/22/08 1240	Jeremy L Weaver	n.a.
05705	WW/TL SW 846 ICP Digest (tot)	SW-846 3010A	1	4/23/08 1922	James L Mertz	1
533313	6 S2387RF4-Enviblend10-41408 So	il + 10% Enviroblend				
06955	Lead	SW-846 6010B	1	4/22/08 0122	Choon Y Tian	100
00111	Moisture	SM20 2540 G	1	4/17/08 1534	Scott W Freisher	1
04221	Organolead in Soil by GC/MS	SW-846 8270C	1	4/24/08 2229	Gregory J Drahovsky	1
00381	BNA Soil Extraction	SW-846 3550B	1	4/24/08 0815	Kerrie A Freeburn	1
05708	SW SW846 ICP Digest	SW-846 3050B	1	4/16/08 2105	Annamaria Stipkovits	1
533313	7 S2387RF4-Enviblend10-41408 So	il + 10% Enviroblend				
07055	Lead	SW-846 6010B	1	4/26/08 1058	Joanne M Gates	1
00947	TCLP Non-volatile Extraction	SW-846 1311	1	4/22/08 1240	Jeremy L Weaver	n.a.
05705	WW/TL SW 846 ICP Digest (tot)	SW-846 3010A	1	4/23/08 1922	James L Mertz	1

Client Name: Chevron Group Number: 1086602

Laboratory Compliance Quality Control

Analysis Name	Blank Result	Blank MDL	Report Units	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	Max RPD	<u>.</u>
Batch number: 081075708002		Sample number 5333118,5333	` '	2,5333124,	5333126,	5333128,5333	130,5333	132,533313	34,5333136
Lead	N.D.	490.	ug/kg	96		90-110			
Batch number: 08108820004A		Sample number 5333118,5333	` '	2,5333124,	5333126,	5333128,5333	130,5333	132,533313	34,5333136
Moisture				100		99-101			
Batch number: 081145705002		Sample number 5333119,5333	` '	3,5333125,	5333127,	5333129,5333	131,5333	133,533313	85,5333137
Lead	N.D.	0.0069	mg/l	111		90-113			
Batch number: 08114SLC026		Sample number 5333118,5333	` '	2,5333124,	5333126,	5333128,5333	130,5333	132,533313	34,5333136
tetraethyl lead	N.D.	67.	ug/kg	97		70-130			
Sample Matrix Quality Control Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate									
Analysis Name	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Max	BKG Conc	DUP Conc	DUP RPD	DUP RPD Max
Batch number: 081075708002		Sample number 5333118,5333	` '	2,5333124,	5333126,	5333128,5333	130,5333	132,533313	34,5333136
Lead	28128 (2	28128 (2	75-125	42*	20	1,410,000.	5,730,000	. 131	* 20

5333118,5333120,5333122,5333124,5333126,5333128,5333130,5333132,5333134,5333136

Batch number: 08108820004A

Sample number(s):

^{* -} Outside of specification

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Moisture 7.8 7.8 0 15

Batch number: 081145705002 Sample number(s):

Lead -3153 (2 -3153 (2 75-125 1 20 271. 268. 1 20

Batch number: 08114SLC026 Sample number(s):

5333118, 5333120, 5333122, 5333124, 5333126, 5333128, 5333130, 5333132, 5333134, 5333136, 5333166, 53366, 53666, 53666, 53666, 53666, 53666, 53666, 53666, 53666, 53666, 53666, 53666, 536666, 53666, 53666, 53666, 536660, 53666, 53666, 53666, 53666, 53666, 53666, 53666, 53666, 53666

tetraethyl lead 102 115 70-130 12 30

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: Organolead in Soil by GC/MS

Batch number: 08114SLC026

	Nitrobenzene-d5	2-Fluorobiphenyl	Terphenyl-d14	
5333118	112	107	129	
5333120	119	108	162*	
5333122	125	130*	153*	
5333124	109	109	160*	
5333126	122	127*	162*	
5333128	125	46*	57	
5333130	68	39*	55	
5333132	54	38*	59	
5333134	52	45*	58	
5333136	93	151*	205*	
Blank	108	101	104	
LCS	110	99	96	
MS	119	102	150*	
MSD	127	140*	144*	
Limits:	47-128	55-123	49-134	

^{* -} Outside of specification

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

QC Comment

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

5333118 S2197RB2 Contaminated Soil Sample

00111 Moisture

"Moisture" represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported above is on an as-received basis.

State of New Jersey Lab Certification No. PA011 The temperature of the sample(s) upon receipt at the lab was 6.3-9.7 C.

5333119 S2197RB2 Contaminated Soil Sample

State of New Jersey Lab Certification No. PA011 The temperature of the sample(s) upon receipt at the lab was 6.3-9.7 C.

see Table 1 in EPA Code of Federal Regulations 40 CFR 261.24.

5333120 S2197RB2-TSP5-41408 Soil + 5% TSP Sample

00111 Moisture

"Moisture" represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported above is on an as-received basis.

04221 Organolead in Soil by GC/MS

The surrogate data is outside the QC limits due to unresolvable matrix problems evident in the sample chromatogram.

State of New Jersey Lab Certification No. PA011 The temperature of the sample(s) upon receipt at the lab was 6.3-9.7 C.

5333121 S2197RB2-TSP5-41408 Soil + 5% TSP Sample

State of New Jersey Lab Certification No. PA011 The temperature of the sample(s) upon receipt at the lab was 6.3-9.7 C.

see Table 1 in EPA Code of Federal Regulations 40 CFR 261.24.

5333122 S2197RB2-TSP10-41408 Soil + 10% TSP Sample

00111 Moisture

"Moisture" represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported above is on an as-received basis.

04221 Organolead in Soil by GC/MS

The surrogate data is outside the QC limits due to unresolvable matrix problems evident in the sample chromatogram.

State of New Jersey Lab Certification No. PA011 The temperature of the sample(s) upon receipt at the lab was 6.3-9.7 C.

5333123 S2197RB2-TSP10-41408 Soil + 10% TSP Sample

State of New Jersey Lab Certification No. PA011 The temperature of the sample(s) upon receipt at the lab was 6.3-9.7 C.

see Table 1 in EPA Code of Federal Regulations 40 CFR 261.24.

5333124 S2197RB2-Enviblend_5-41408 Soil + 5% Enviroblend

00111 Moisture

"Moisture" represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported above is on an as-received basis.

04221 Organolead in Soil by GC/MS

The surrogate data is outside the QC limits due to unresolvable matrix problems evident in the sample chromatogram.

State of New Jersey Lab Certification No. PA011 The temperature of the sample(s) upon receipt at the lab was 6.3-9.7 C.

5333125 S2197RB2-Enviblend_5-41408 Soil + 5% Enviroblend

State of New Jersey Lab Certification No. PA011 The temperature of the sample(s) upon receipt at the lab was 6.3-9.7 C.

see Table 1 in EPA Code of Federal Regulations 40 CFR 261.24.

5333126 S2197RB2-Enviblend7.5-41408 Soil + 7.5%

00111 Moisture

"Moisture" represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported above is on an as-received basis.

04221 Organolead in Soil by GC/MS

The surrogate data is outside the QC limits due to unresolvable matrix problems evident in the sample chromatogram.

State of New Jersey Lab Certification No. PA011 The temperature of the sample(s) upon receipt at the lab was 6.3-9.7 C.

5333127 S2197RB2-Enviblend7.5-41408 Soil + 7.5%

State of New Jersey Lab Certification No. PA011 The temperature of the sample(s) upon receipt at the lab was 6.3-9.7 C.

see Table 1 in EPA Code of Federal Regulations 40 CFR 261.24.

5333128 S2387RF4-Raw Contaminated Soil Sample

00111 Moisture

"Moisture" represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported above is on an as-received basis.

04221 Organolead in Soil by GC/MS

Surrogate recoveries are outside of QC limits for the initial GC/MS semivolatile analysis. The analysis was repeated outside of the required hold time and the surrogate recoveries are within the limits. The data reported is from the initial extraction of the sample.

State of New Jersey Lab Certification No. PA011 The temperature of the sample(s) upon receipt at the lab was 6.3-9.7 C.

5333129 S2387RF4-Raw Contaminated Soil Sample

State of New Jersey Lab Certification No. PA011 The temperature of the sample(s) upon receipt at the lab was 6.3-9.7 C.

see Table 1 in EPA Code of Federal Regulations 40 CFR 261.24.

5333130 S2387RF4-TSP5-41408 Soil + 5% TSP Sample

00111 Moisture

"Moisture" represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported above is on an as-received basis.

04221 Organolead in Soil by GC/MS

Surrogate recoveries are outside of QC limits for the initial GC/MS semivolatile analysis. The analysis was repeated outside of the required hold time and the surrogate recoveries are within the limits. The data reported is from the initial extraction of the sample.

State of New Jersey Lab Certification No. PA011 The temperature of the sample(s) upon receipt at the lab was 6.3-9.7 C.

5333131 S2387RF4-TSP5-41408 Soil + 5% TSP Sample

State of New Jersey Lab Certification No. PA011 The temperature of the sample(s) upon receipt at the lab was 6.3-9.7 C.

see Table 1 in EPA Code of Federal Regulations 40 CFR 261.24.

5333132 S2387RF4-TSP10-41408 Soil + 10% TSP Sample

00111 Moisture

"Moisture" represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported above is on an as-received basis.

04221 Organolead in Soil by GC/MS

Surrogate recoveries are outside of QC limits for the initial GC/MS semivolatile analysis. The analysis was repeated outside of the required hold time and the surrogate recoveries are within the limits. The data reported is from the initial extraction of the sample.

State of New Jersey Lab Certification No. PA011 The temperature of the sample(s) upon receipt at the lab was 6.3-9.7 C.

5333133 S2387RF4-TSP10-41408 Soil + 10% TSP Sample

State of New Jersey Lab Certification No. PA011 The temperature of the sample(s) upon receipt at the lab was 6.3-9.7 C.

see Table 1 in EPA Code of Federal Regulations 40 CFR 261.24.

5333134 S2387RF4-Enviblend 5-41408 Soil + 5% Enviroblend

00111 Moisture

"Moisture" represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported above is on an as-received basis.

04221 Organolead in Soil by GC/MS

Surrogate recoveries are outside of QC limits for the initial GC/MS semivolatile analysis. The analysis was repeated outside of the required hold time and the surrogate recoveries are within the limits. The data reported is from the initial extraction of the sample.

The GC/MS semivolatile internal standard peak areas were outside of the QC limits for both the initial injection and the re-injection. The values here are from the initial injection of the sample.

State of New Jersey Lab Certification No. PA011 The temperature of the sample(s) upon receipt at the lab was 6.3-9.7 C.

5333135 S2387RF4-Enviblend_5-41408 Soil + 5% Enviroblend

State of New Jersey Lab Certification No. PA011 The temperature of the sample(s) upon receipt at the lab was 6.3-9.7 C.

see Table 1 in EPA Code of Federal Regulations 40 CFR 261.24.

5333136 S2387RF4-Enviblend10-41408 Soil + 10% Enviroblend

00111 Moisture

"Moisture" represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported above is on an as-received basis.

04221 Organolead in Soil by GC/MS

The surrogate data is outside the QC limits due to unresolvable matrix problems evident in the sample chromatogram.

Due to sample matrix interferences observed during the extraction, the normal reporting limits were not attained.

State of New Jersey Lab Certification No. PA011 The temperature of the sample(s) upon receipt at the lab was 6.3-9.7 C.

5333137 S2387RF4-Enviblend10-41408 Soil + 10% Enviroblend

State of New Jersey Lab Certification No. PA011 The temperature of the sample(s) upon receipt at the lab was 6.3-9.7 C.

see Table 1 in EPA Code of Federal Regulations 40 CFR 261.24.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

Chevron 1200 State Street Perth Amboy NJ 08861

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 1086602. Samples arrived at the laboratory on Tuesday, April 15, 2008. The PO# for this group is 0015010693 and the release number is LAVORERIO.

Client Description	<u>Lancaster Labs Number</u>
S2197RB2 Contaminated Soil Sample	5333118
S2197RB2 Contaminated Soil Sample	5333119
S2197RB2-TSP5-41408 Soil + 5% TSP Sample	5333120
S2197RB2-TSP5-41408 Soil + 5% TSP Sample	5333121
S2197RB2-TSP10-41408 Soil + 10% TSP Sample	5333122
S2197RB2-TSP10-41408 Soil + 10% TSP Sample	5333123
S2197RB2-Enviblend_5-41408 Soil + 5% Enviroblend	5333124
S2197RB2-Enviblend_5-41408 Soil + 5% Enviroblend	5333125
S2197RB2-Enviblend7.5-41408 Soil + 7.5%	5333126
S2197RB2-Enviblend7.5-41408 Soil + 7.5%	5333127
S2387RF4-Raw Contaminated Soil Sample	5333128
S2387RF4-Raw Contaminated Soil Sample	5333129
S2387RF4-TSP5-41408 Soil + 5% TSP Sample	5333130
S2387RF4-TSP5-41408 Soil + 5% TSP Sample	5333131
S2387RF4-TSP10-41408 Soil + 10% TSP Sample	5333132
S2387RF4-TSP10-41408 Soil + 10% TSP Sample	5333133
S2387RF4-Enviblend_5-41408 Soil + 5% Enviroblend	5333134
S2387RF4-Enviblend_5-41408 Soil + 5% Enviroblend	5333135
S2387RF4-Enviblend10-41408 Soil + 10% Enviroblend	5333136
S2387RF4-Enviblend10-41408 Soil + 10% Enviroblend	5333137

METHODOLOGY

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

The specific methodologies used in obtaining the enclosed analytical results are indicated on the laboratory chronicles.

ELECTRONIC URS Corporation Attn: Jerry Vorbach

COPY TO

1 COPY TO Data Package Group

1 COPY TO ENTACT HOUSTON Attn: Maggie Benningfield

Questions? Contact your Client Services Representative Wendy A Kozma at (717) 656-2300

Respectfully Submitted,

Had Moline

Chad A. Moline Group Leader

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. SW5333118

Group No. 1086602

S2197RB2 Contaminated Soil Sample CVX 108 Perth Amboy

Collected:04/14/2008 by MB Account Number: 11071

Submitted: 04/15/2008 09:40 Chevron

Reported: 05/09/2008 at 08:42 1200 State Street
Discard: 05/24/2008 Perth Amboy NJ 08861

RB2-- SDG#: RFQ95-01

					Dry		
CAT			Dry		Method		Dilution
No.	Analysis Name	CAS Number	Result		Detection Limit	Units	Factor
06955	Lead	7439-92-1	1,560,00	00.	2,710.	ug/kg	5
00111	Moisture	n.a.	9.6		0.50	%	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.						
04221	Organolead in Soil by GC/MS						
04223	tetraethyl lead	78-00-2	150.	J	74.	ug/kg	1

State of New Jersey Lab Certification No. PA011 The temperature of the sample(s) upon receipt at the lab was 6.3-9.7 C.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT			-	Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06955	Lead	SW-846 6010B	1	04/22/2008 00:33	Choon Y Tian	5
00111	Moisture	SM20 2540 G	1	04/17/2008 15:34	Scott W Freisher	1
04221	Organolead in Soil by GC/MS	SW-846 8270C	1	04/24/2008 18:03	Gregory J Drahovsky	1
00381	BNA Soil Extraction	SW-846 3550B	1	04/24/2008 08:15	Kerrie A Freeburn	1
05708	SW SW846 ICP Digest	SW-846 3050B	1	04/16/2008 21:05	Annamaria Stipkovits	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. TL5333119 Group No. 1086602

S2197RB2 Contaminated Soil Sample TCLP NON-VOLATILE EXTRACTION

CVX 108 Perth Amboy

Collected:04/14/2008 by MB Account Number: 11071

Submitted: 04/15/2008 09:40 Chevron

Reported: 05/09/2008 at 08:42 1200 State Street
Discard: 05/24/2008 Perth Amboy NJ 08861

NRB2- SDG#: RFQ95-02

As Received As Received Method Dilution Analysis Name CAS Number Result Detection Units Factor No. Limit 07055 Lead 7439-92-1 0.312 0.0069 mg/1

State of New Jersey Lab Certification No. PA011 The temperature of the sample(s) upon receipt at the lab was 6.3-9.7 C.

If the analysis is for determination of Hazardous Waste Characteristics, see Table 1 in EPA Code of Federal Regulations 40 CFR 261.24.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT			2	Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
07055	Lead	SW-846 6010B	1	04/26/2008 10:22	Joanne M Gates	1
00947	TCLP Non-volatile Extraction	SW-846 1311	1	04/22/2008 12:40	Jeremy L Weaver	n.a.
05705	WW/TL SW 846 ICP Digest (tot)	SW-846 3010A	1	04/23/2008 19:22	James L Mertz	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. SW5333120

Group No. 1086602

S2197RB2-TSP5-41408 Soil + 5% TSP Sample CVX 108 Perth Amboy

Collected:04/14/2008 by MB Account Number: 11071

Submitted: 04/15/2008 09:40 Chevron

Reported: 05/09/2008 at 08:42 1200 State Street
Discard: 05/24/2008 Perth Amboy NJ 08861

RB2T5 SDG#: RFQ95-03

				Dry		
CAT			Dry	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
06955	Lead	7439-92-1	1,510,000.	2,840.	ug/kg	5
00111	Moisture	n.a.	14.5	0.50	%	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.					
04221	Organolead in Soil by GC/MS					
04223	tetraethyl lead	78-00-2	150. J	78.	ug/kg	1
	The surrogate data is outside t problems evident in the sample	~	ue to unresolvab	le matrix		

State of New Jersey Lab Certification No. PA011 The temperature of the sample(s) upon receipt at the lab was 6.3-9.7 C.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT			_	Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06955	Lead	SW-846 6010B	1	04/22/2008 00:51	Choon Y Tian	5
00111	Moisture	SM20 2540 G	1	04/17/2008 15:34	Scott W Freisher	1
04221	Organolead in Soil by GC/MS	SW-846 8270C	1	04/24/2008 19:15	Gregory J Drahovsky	1
00381	BNA Soil Extraction	SW-846 3550B	1	04/24/2008 08:15	Kerrie A Freeburn	1
05708	SW SW846 ICP Digest	SW-846 3050B	1	04/16/2008 21:05	Annamaria Stipkovits	1

Account Number: 11071

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. TL5333121 Group No. 1086602

S2197RB2-TSP5-41408 Soil + 5% TSP Sample

TCLP NON-VOLATILE EXTRACTION CVX 108 Perth Amboy

Collected:04/14/2008 by MB

Submitted: 04/15/2008 09:40 Chevron

Reported: 05/09/2008 at 08:42 1200 State Street
Discard: 05/24/2008 Perth Amboy NJ 08861

NR2T5 SDG#: RFQ95-04

As Received As Received Method Dilution Analysis Name CAS Number Result Detection Units Factor No. Limit 07055 Lead 7439-92-1 0.0069 mg/1

State of New Jersey Lab Certification No. PA011 The temperature of the sample(s) upon receipt at the lab was 6.3-9.7 C.

If the analysis is for determination of Hazardous Waste Characteristics, see Table 1 in EPA Code of Federal Regulations 40 CFR 261.24.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT			2	Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
07055	Lead	SW-846 6010B	1	04/26/2008 10:33	Joanne M Gates	1
00947	TCLP Non-volatile Extraction	SW-846 1311	1	04/22/2008 12:40	Jeremy L Weaver	n.a.
05705	WW/TL SW 846 ICP Digest (tot)	SW-846 3010A	1	04/23/2008 19:22	James L Mertz	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. SW5333122

Group No. 1086602

S2197RB2-TSP10-41408 Soil + 10% TSP Sample CVX 108 Perth Amboy

Collected:04/14/2008 by MB Account Number: 11071

Submitted: 04/15/2008 09:40 Chevron

Reported: 05/09/2008 at 08:42 1200 State Street
Discard: 05/24/2008 Perth Amboy NJ 08861

B210- SDG#: RFQ95-05

				Dry		
CAT			Dry	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
06955	Lead	7439-92-1	572,000.	546.	ug/kg	1
00111	Moisture	n.a.	12.9	0.50	%	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.					
04221	Organolead in Soil by GC/MS					
04223	tetraethyl lead	78-00-2	110. J	77.	ug/kg	1
	The surrogate data is outside to problems evident in the sample	~	ue to unresolval	ole matrix		

State of New Jersey Lab Certification No. PA011 The temperature of the sample(s) upon receipt at the lab was 6.3-9.7 C.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT			-	Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06955	Lead	SW-846 6010B	1	04/22/2008 00:54	Choon Y Tian	1
00111	Moisture	SM20 2540 G	1	04/17/2008 15:34	Scott W Freisher	1
04221	Organolead in Soil by GC/MS	SW-846 8270C	1	04/24/2008 19:40	Gregory J Drahovsky	1
00381	BNA Soil Extraction	SW-846 3550B	1	04/24/2008 08:15	Kerrie A Freeburn	1
05708	SW SW846 ICP Digest	SW-846 3050B	1	04/16/2008 21:05	Annamaria Stipkovits	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. TL5333123 Group No. 1086602

S2197RB2-TSP10-41408 Soil + 10% TSP Sample TCLP NON-VOLATILE EXTRACTION

CVX 108 Perth Amboy

Account Number: 11071 Collected: 04/14/2008 by MB

Submitted: 04/15/2008 09:40 Chevron

Reported: 05/09/2008 at 08:42 1200 State Street Discard: 05/24/2008 Perth Amboy NJ 08861

SDG#: RFQ95-06 NB210

As Received As Received Method Dilution Analysis Name CAS Number Result Detection Units Factor No. Limit 07055 Lead 7439-92-1 0.0141 J 0.0069 mg/1

State of New Jersey Lab Certification No. PA011 The temperature of the sample(s) upon receipt at the lab was 6.3-9.7 C.

If the analysis is for determination of Hazardous Waste Characteristics, see Table 1 in EPA Code of Federal Regulations 40 CFR 261.24.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT			4	Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
07055	Lead	SW-846 6010B	1	04/26/2008 10:37	Joanne M Gates	1
00947	TCLP Non-volatile Extraction	SW-846 1311	1	04/22/2008 12:40	Jeremy L Weaver	n.a.
05705	WW/TL SW 846 ICP Digest (tot)	SW-846 3010A	1	04/23/2008 19:22	James L Mertz	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. SW5333124

Group No. 1086602

S2197RB2-Enviblend_5-41408 Soil + 5% Enviroblend 80/20 Sample

CVX 108 Perth Amboy

Account Number: 11071 Collected: 04/14/2008 by MB

Submitted: 04/15/2008 09:40

Chevron Reported: 05/09/2008 at 08:42 1200 State Street Discard: 05/24/2008 Perth Amboy NJ 08861

RB2E5 SDG#: RFQ95-07

				Dry		
CAT			Dry	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
06955	Lead	7439-92-1	1,070,000.	535.	ug/kg	1
00111	Moisture	n.a.	10.2	0.50	8	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.					
04221	Organolead in Soil by GC/MS					
04223	tetraethyl lead	78-00-2	150. J	74.	ug/kg	1
	The surrogate data is outside t problems evident in the sample	~	ue to unresolvab	le matrix		

State of New Jersey Lab Certification No. PA011 The temperature of the sample(s) upon receipt at the lab was 6.3-9.7 C.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT			_	Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06955	Lead	SW-846 6010B	1	04/22/2008 01:04	Choon Y Tian	1
00111	Moisture	SM20 2540 G	1	04/17/2008 15:34	Scott W Freisher	1
04221	Organolead in Soil by GC/MS	SW-846 8270C	1	04/24/2008 20:04	Gregory J Drahovsky	1
00381	BNA Soil Extraction	SW-846 3550B	1	04/24/2008 08:15	Kerrie A Freeburn	1
05708	SW SW846 ICP Digest	SW-846 3050B	1	04/16/2008 21:05	Annamaria Stipkovits	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. TL5333125

Group No. 1086602

Chevron

S2197RB2-Enviblend_5-41408 Soil + 5% Enviroblend 80/20 Sample TCLP NON-VOLATILE EXTRACTION

CVX 108 Perth Amboy

Collected:04/14/2008 by MB Account Number: 11071

Submitted: 04/15/2008 09:40

Reported: 05/09/2008 at 08:42 1200 State Street
Discard: 05/24/2008 Perth Amboy NJ 08861

NB2E5 SDG#: RFQ95-08

As Received As Received Method Dilution Analysis Name CAS Number Result Detection Units Factor No. Limit 07055 Lead 7439-92-1 0.0069 mg/1

State of New Jersey Lab Certification No. PA011 The temperature of the sample(s) upon receipt at the lab was 6.3-9.7 C.

If the analysis is for determination of Hazardous Waste Characteristics, see Table 1 in EPA Code of Federal Regulations 40 CFR 261.24.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT			2	Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
07055	Lead	SW-846 6010B	1	04/26/2008 10:40	Joanne M Gates	1
00947	TCLP Non-volatile Extraction	SW-846 1311	1	04/22/2008 12:40	Jeremy L Weaver	n.a.
05705	WW/TL SW 846 ICP Digest (tot)	SW-846 3010A	1	04/23/2008 19:22	James L Mertz	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. SW5333126

problems evident in the sample chromatogram.

Group No. 1086602

S2197RB2-Enviblend7.5-41408 Soil + 7.5% Enviroblend 80/20 Sample

CVX 108 Perth Amboy

Collected:04/14/2008 by MB Account Number: 11071

Submitted: 04/15/2008 09:40 Chevron

Reported: 05/09/2008 at 08:42 1200 State Street
Discard: 05/24/2008 Perth Amboy NJ 08861

RB75- SDG#: RFQ95-09

CAT			Dry	Dry Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
06955	Lead	7439-92-1	872,000.	545.	ug/kg	1
00111	Moisture	n.a.	11.0	0.50	%	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				at	
04221	Organolead in Soil by GC/MS					
04223	tetraethyl lead The surrogate data is outside t	78-00-2 he QC limits du	100. J ne to unresol	75. vable matrix	ug/kg	1

State of New Jersey Lab Certification No. PA011 The temperature of the sample(s) upon receipt at the lab was 6.3-9.7 C.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT			_	Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06955	Lead	SW-846 6010B	1	04/22/2008 01:07	Choon Y Tian	1
00111	Moisture	SM20 2540 G	1	04/17/2008 15:34	Scott W Freisher	1
04221	Organolead in Soil by GC/MS	SW-846 8270C	1	04/24/2008 20:28	Gregory J Drahovsky	1
00381	BNA Soil Extraction	SW-846 3550B	1	04/24/2008 08:15	Kerrie A Freeburn	1
05708	SW SW846 ICP Digest	SW-846 3050B	1	04/16/2008 21:05	Annamaria Stipkovits	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. TL5333127

Group No. 1086602

Chevron

S2197RB2-Enviblend7.5-41408 Soil + 7.5%

Enviroblend 80/20 TCLP NON-VOLATILE EXTRACTION

CVX 108 Perth Amboy

Collected:04/14/2008 by MB Account Number: 11071

Submitted: 04/15/2008 09:40

Reported: 05/09/2008 at 08:42 1200 State Street
Discard: 05/24/2008 Perth Amboy NJ 08861

NRB75 SDG#: RFQ95-10

As Received As Received Method Dilution Analysis Name CAS Number Result Detection Units Factor No. Limit 07055 Lead 7439-92-1 0.0069 mg/1

State of New Jersey Lab Certification No. PA011 The temperature of the sample(s) upon receipt at the lab was 6.3-9.7 C.

If the analysis is for determination of Hazardous Waste Characteristics, see Table 1 in EPA Code of Federal Regulations 40 CFR 261.24.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT			4	Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
07055	Lead	SW-846 6010B	1	04/26/2008 10:44	Joanne M Gates	1
00947	TCLP Non-volatile Extraction	SW-846 1311	1	04/22/2008 12:40	Jeremy L Weaver	n.a.
05705	WW/TL SW 846 ICP Digest (tot)	SW-846 3010A	1	04/23/2008 19:22	James L Mertz	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. SW5333128

Group No. 1086602

S2387RF4-Raw Contaminated Soil Sample CVX 108 Perth Amboy

Collected:04/14/2008 by MB Account Number: 11071

Submitted: 04/15/2008 09:40 Chevron

Reported: 05/09/2008 at 08:42 1200 State Street
Discard: 05/24/2008 Perth Amboy NJ 08861

7RF4R SDG#: RFQ95-11

				Dry		
CAT			Dry	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
06955	Lead	7439-92-1	143,000,000.	127,000.	ug/kg	200
00111	Moisture	n.a.	23.5	0.50	용	1
04221	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis. Organolead in Soil by GC/MS					
	-					
04223	tetraethyl lead	78-00-2	1,300.	87.	ug/kg	1
	Surrogate recoveries are outside semivolatile analysis. The analyhold time and the surrogate recovereported is from the initial ex	lysis was repe overies are wi	ated outside of t thin the limits.	he required		

State of New Jersey Lab Certification No. PA011 The temperature of the sample(s) upon receipt at the lab was 6.3-9.7 C.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	- Analysis					
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06955	Lead	SW-846 6010B	1	04/25/2008 04:25	Choon Y Tian	200
00111	Moisture	SM20 2540 G	1	04/17/2008 15:34	Scott W Freisher	1
04221	Organolead in Soil by GC/MS	SW-846 8270C	1	04/24/2008 20:52	Gregory J Drahovsky	1
00381	BNA Soil Extraction	SW-846 3550B	1	04/24/2008 08:15	Kerrie A Freeburn	1
05708	SW SW846 ICP Digest	SW-846 3050B	1	04/16/2008 21:05	Annamaria Stipkovits	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. TL5333129 Group No. 1086602

S2387RF4-Raw Contaminated Soil Sample TCLP NON-VOLATILE EXTRACTION

CVX 108 Perth Amboy

Collected:04/14/2008 by MB Account Number: 11071

Submitted: 04/15/2008 09:40 Chevron

Reported: 05/09/2008 at 08:42 1200 State Street
Discard: 05/24/2008 Perth Amboy NJ 08861

NRF4R SDG#: RFQ95-12

As Received As Received Method Dilution Analysis Name CAS Number Result Detection Units Factor No. Limit 07055 Lead 7439-92-1 1,530. 200 1.38 mg/1

State of New Jersey Lab Certification No. PA011 The temperature of the sample(s) upon receipt at the lab was 6.3-9.7 C.

If the analysis is for determination of Hazardous Waste Characteristics, see Table 1 in EPA Code of Federal Regulations 40 CFR 261.24.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT			-	Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
07055	Lead	SW-846 6010B	1	04/26/2008 10:48	Joanne M Gates	200
00947	TCLP Non-volatile Extraction	SW-846 1311	1	04/22/2008 12:40	Jeremy L Weaver	n.a.
05705	WW/TL SW 846 ICP Digest (tot)	SW-846 3010A	1	04/23/2008 19:22	James L Mertz	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. SW5333130

Group No. 1086602

S2387RF4-TSP5-41408 Soil + 5% TSP Sample CVX 108 Perth Amboy

Collected:04/14/2008 by MB Account Number: 11071

Submitted: 04/15/2008 09:40 Chevron

Reported: 05/09/2008 at 08:42 1200 State Street
Discard: 05/24/2008 Perth Amboy NJ 08861

RF4-5 SDG#: RFQ95-13

				Dry		
CAT			Dry	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
06955	Lead	7439-92-1	144,000,000.	129,000.	ug/kg	200
00111	Moisture	n.a.	24.5	0.50	8	1
04221	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis. Organolead in Soil by GC/MS					
	1 ,					
04223	tetraethyl lead	78-00-2	1,300.	88.	ug/kg	1
	Surrogate recoveries are outsid	e of QC limits	for the initial	GC/MS		
	semivolatile analysis. The ana	lysis was repe	ated outside of	the required		
	hold time and the surrogate rec	overies are wi	thin the limits.	The data		
	reported is from the initial ex	traction of the	e sample.			

State of New Jersey Lab Certification No. PA011 The temperature of the sample(s) upon receipt at the lab was 6.3-9.7 C.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06955	Lead	SW-846 6010B	1	04/25/2008 04:29	Choon Y Tian	200
00111	Moisture	SM20 2540 G	1	04/17/2008 15:34	Scott W Freisher	1
04221	Organolead in Soil by GC/MS	SW-846 8270C	1	04/24/2008 21:16	Gregory J Drahovsky	1
00381	BNA Soil Extraction	SW-846 3550B	1	04/24/2008 08:15	Kerrie A Freeburn	1
05708	SW SW846 ICP Digest	SW-846 3050B	1	04/16/2008 21:05	Annamaria Stipkovits	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. TL5333131 Group No. 1086602

S2387RF4-TSP5-41408 Soil + 5% TSP Sample TCLP NON-VOLATILE EXTRACTION

CVX 108 Perth Amboy

Collected:04/14/2008 by MB Account Number: 11071

Submitted: 04/15/2008 09:40 Chevron

Reported: 05/09/2008 at 08:42 1200 State Street
Discard: 05/24/2008 Perth Amboy NJ 08861

NRF45 SDG#: RFQ95-14

As Received As Received Method Dilution Detection Analysis Name CAS Number Result Units Factor No. Limit 07055 Lead 7439-92-1 0.345 mg/1

State of New Jersey Lab Certification No. PA011 The temperature of the sample(s) upon receipt at the lab was 6.3-9.7 C.

If the analysis is for determination of Hazardous Waste Characteristics, see Table 1 in EPA Code of Federal Regulations 40 CFR 261.24.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT			-	Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
07055	Lead	SW-846 6010B	1	04/26/2008 10:01	Joanne M Gates	50
00947	TCLP Non-volatile Extraction	SW-846 1311	1	04/22/2008 12:40	Jeremy L Weaver	n.a.
05705	WW/TL SW 846 ICP Digest (tot)	SW-846 3010A	1	04/23/2008 19:22	James L Mertz	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. SW5333132

Group No. 1086602

S2387RF4-TSP10-41408 Soil + 10% TSP Sample CVX 108 Perth Amboy

Collected:04/14/2008 by MB Account Number: 11071

Submitted: 04/15/2008 09:40 Chevron

Reported: 05/09/2008 at 08:42 1200 State Street
Discard: 05/24/2008 Perth Amboy NJ 08861

F4T10 SDG#: RFQ95-15

				Dry			
CAT			Dry	Method		Dilution	
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor	
06955	Lead	7439-92-1	126,000,000.	63,100.	ug/kg	100	
00111	Moisture	n.a.	24.6	0.50	%	1	
04221	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis. Organolead in Soil by GC/MS						
04221	organoread in borr by GC/Mb						
04223	tetraethyl lead	78-00-2	1,700.	88.	ug/kg	1	
	Surrogate recoveries are outside	le of QC limits	for the initial	GC/MS			
	semivolatile analysis. The ana	lysis was repe	ated outside of	the required			
	hold time and the surrogate red	overies are wi	thin the limits.	The data			
	reported is from the initial ex	traction of th	e sample.				

State of New Jersey Lab Certification No. PA011 The temperature of the sample(s) upon receipt at the lab was 6.3-9.7 C.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

		_000	-,				
CAT	Analysis						
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor	
06955	Lead	SW-846 6010B	1	04/22/2008 01:16	Choon Y Tian	100	
00111	Moisture	SM20 2540 G	1	04/17/2008 15:34	Scott W Freisher	1	
04221	Organolead in Soil by GC/MS	SW-846 8270C	1	04/24/2008 21:40	Gregory J Drahovsky	1	
00381	BNA Soil Extraction	SW-846 3550B	1	04/24/2008 08:15	Kerrie A Freeburn	1	
05708	SW SW846 ICP Digest	SW-846 3050B	1	04/16/2008 21:05	Annamaria Stipkovits	1	

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. TL5333133

S2387RF4-TSP10-41408 Soil + 10% TSP Sample

TCLP NON-VOLATILE EXTRACTION

CVX 108 Perth Amboy

Account Number: 11071 Collected: 04/14/2008 by MB

Submitted: 04/15/2008 09:40

Reported: 05/09/2008 at 08:42

Discard: 05/24/2008

1200 State Street

Perth Amboy NJ 08861

Group No. 1086602

SDG#: RFQ95-16 N4T10

As Received

Chevron

As Received Method Dilution Analysis Name CAS Number Result Detection Units Factor No. Limit 07055 Lead 7439-92-1 0.155 0.0069 mg/1

State of New Jersey Lab Certification No. PA011 The temperature of the sample(s) upon receipt at the lab was 6.3-9.7 C.

If the analysis is for determination of Hazardous Waste Characteristics, see Table 1 in EPA Code of Federal Regulations 40 CFR 261.24.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
07055	Lead	SW-846 6010B	1	04/26/2008 10:51	Joanne M Gates	1
00947	TCLP Non-volatile Extraction	SW-846 1311	1	04/22/2008 12:40	Jeremy L Weaver	n.a.
05705	WW/TL SW 846 ICP Digest (tot)	SW-846 3010A	1	04/23/2008 19:22	James L Mertz	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. SW5333134

Group No. 1086602

S2387RF4-Enviblend_5-41408 Soil + 5% Enviroblend 80/20 Sample

CVX 108 Perth Amboy

Collected:04/14/2008 by MB Account Number: 11071

Submitted: 04/15/2008 09:40 Chevron

Reported: 05/09/2008 at 08:42 1200 State Street
Discard: 05/24/2008 Perth Amboy NJ 08861

4E-5- SDG#: RFQ95-17

				Dry		
CA	AT		Dry	Method		Dilution
No	o. Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
06	5955 Lead	7439-92-1	115,000,000.	59,900.	ug/kg	100
00	0111 Moisture	n.a.	19.8	0.50	%	1
04	"Moisture" represents the los 103 - 105 degrees Celsius. Th as-received basis.					
04	1223 tetraethyl lead	78-00-2	1,400.	83.	ug/kg	1
	Surrogate recoveries are outs semivolatile analysis. The a hold time and the surrogate r reported is from the initial	nalysis was repe ecoveries are wi	eated outside of thin the limits.	the required		

The GC/MS semivolatile internal standard peak areas were outside of the QC limits for both the initial injection and the re-injection. The values here are from the initial injection of the sample.

State of New Jersey Lab Certification No. PA011 The temperature of the sample(s) upon receipt at the lab was 6.3-9.7 C.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT			4	Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06955	Lead	SW-846 6010B	1	04/22/2008 01:19	Choon Y Tian	100
00111	Moisture	SM20 2540 G	1	04/17/2008 15:34	Scott W Freisher	1
04221	Organolead in Soil by GC/MS	SW-846 8270C	1	04/24/2008 22:05	Gregory J Drahovsky	1
00381	BNA Soil Extraction	SW-846 3550B	1	04/24/2008 08:15	Kerrie A Freeburn	1
05708	SW SW846 ICP Digest	SW-846 3050B	1	04/16/2008 21:05	Annamaria Stipkovits	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. TL5333135

Group No. 1086602

Chevron

S2387RF4-Enviblend_5-41408 Soil + 5% Enviroblend 80/20 Sample TCLP NON-VOLATILE EXTRACTION

CVX 108 Perth Amboy

Collected:04/14/2008 by MB Account Number: 11071

Submitted: 04/15/2008 09:40

Reported: 05/09/2008 at 08:42 1200 State Street
Discard: 05/24/2008 Perth Amboy NJ 08861

N4E5- SDG#: RFQ95-18

As Received As Received Method Dilution Analysis Name CAS Number Result Detection Units Factor No. Limit 07055 Lead 7439-92-1 0.740 0.0069 mg/1

State of New Jersey Lab Certification No. PA011 The temperature of the sample(s) upon receipt at the lab was 6.3-9.7 C.

If the analysis is for determination of Hazardous Waste Characteristics, see Table 1 in EPA Code of Federal Regulations 40 CFR 261.24.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT			4	Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
07055	Lead	SW-846 6010B	1	04/26/2008 10:55	Joanne M Gates	1
00947	TCLP Non-volatile Extraction	SW-846 1311	1	04/22/2008 12:40	Jeremy L Weaver	n.a.
05705	WW/TL SW 846 ICP Digest (tot)	SW-846 3010A	1	04/23/2008 19:22	James L Mertz	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. SW5333136

Group No. 1086602

S2387RF4-Enviblend10-41408 Soil + 10% Enviroblend 80/20 Sample

CVX 108 Perth Amboy

Account Number: 11071 Collected: 04/14/2008 by MB

Submitted: 04/15/2008 09:40 Chevron

Reported: 05/09/2008 at 08:42 1200 State Street Discard: 05/24/2008 Perth Amboy NJ 08861

4E10- SDG#: RFQ95-19

				Dry		
CAT			Dry	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
06955	Lead	7439-92-1	97,200,000.	59,400.	ug/kg	100
00111	Moisture	n.a.	18.3	0.50	%	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.					
04221	Organolead in Soil by GC/MS					
04223	tetraethyl lead	78-00-2	1,600.	410.	ug/kg	1
	The surrogate data is outside t problems evident in the sample	~	ue to unresolvabl	le matrix		

Due to sample matrix interferences observed during the extraction, the normal reporting limits were not attained.

State of New Jersey Lab Certification No. PA011 The temperature of the sample(s) upon receipt at the lab was 6.3-9.7 C.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT			-	Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06955	Lead	SW-846 6010B	1	04/22/2008 01:22	Choon Y Tian	100
00111	Moisture	SM20 2540 G	1	04/17/2008 15:34	Scott W Freisher	1
04221	Organolead in Soil by GC/MS	SW-846 8270C	1	04/24/2008 22:29	Gregory J Drahovsky	1
00381	BNA Soil Extraction	SW-846 3550B	1	04/24/2008 08:15	Kerrie A Freeburn	1
05708	SW SW846 ICP Digest	SW-846 3050B	1	04/16/2008 21:05	Annamaria Stipkovits	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. TL5333137

Group No. 1086602

S2387RF4-Enviblend10-41408 Soil + 10% Enviroblend 80/20 Sample TCLP NON-VOLATILE EXTRACTION

CVX 108 Perth Amboy

Account Number: 11071 Collected: 04/14/2008 by MB

Submitted: 04/15/2008 09:40

Chevron Reported: 05/09/2008 at 08:42 1200 State Street Discard: 05/24/2008 Perth Amboy NJ 08861

N4E10 SDG#: RFQ95-20*

				As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
07055	Lead	7439-92-1	1.07	0.0069	mg/l	1

State of New Jersey Lab Certification No. PA011 The temperature of the sample(s) upon receipt at the lab was 6.3-9.7 C.

If the analysis is for determination of Hazardous Waste Characteristics, see Table 1 in EPA Code of Federal Regulations 40 CFR 261.24.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT			2	Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
07055	Lead	SW-846 6010B	1	04/26/2008 10:58	Joanne M Gates	1
00947	TCLP Non-volatile Extraction	SW-846 1311	1	04/22/2008 12:40	Jeremy L Weaver	n.a.
05705	WW/TL SW 846 ICP Digest (tot)	SW-846 3010A	1	04/23/2008 19:22	James L Mertz	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 3

Quality Control Summary

Client Name: Chevron Group Number: 1086602

Reported: 05/09/08 at 08:42 AM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the

Blank

Laboratory Compliance Quality Control

T.CSD

T.CS /T.CSD

Analysis Name	Result	MDL	<u>Units</u>	%REC	%REC	Limits	RPD	RPD Max
Batch number: 081075708002	Sample nu 5333118,5		3122,5333	124,533312	6,5333128	,5333130,5333	3132,533	3134,533313
Lead	N.D.	490.	ug/kg	96		90-110		
Batch number: 08108820004A	Sample nu 5333118,5		3122,5333	124,533312	6,5333128	,5333130,5333	3132,533	3134,533313
Moisture	J			100		99-101		
Batch number: 081145705002	Sample nu 5333119,5		3123,5333	125,533312	7,5333129	,5333131,5333	3133,533	3135,533313
Lead	N.D.	0.0069	mg/l	111		90-113		
Batch number: 08114SLC026	Sample nu 5333118,5		3122,5333	124,533312	6,5333128	,5333130,5333	3132,533	3134,533313
tetraethyl lead	N.D.	67.	ug/kg	97		70-130		

Report

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS <u>%REC</u>	MSD %REC	MS/MSD <u>Limits</u>	RPD	RPD <u>MAX</u>	BKG <u>Conc</u>	DUP <u>Conc</u>	DUP <u>RPD</u>	Dup RPD <u>Max</u>
Batch number: 081075708002	5333118	•	,5333122,5		,533312	26,5333128,5	333130,53331	132,5333134	5333136
Lead	28128 (2)	14355	BKG: 53331 75-125	42*	20	1,410,000.	6,730,000.	131*	20
Batch number: 08108820004A		•		5333124	,533312	26,5333128,5	333130,53331	132,5333134	5333136
Moisture	21.0.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				7.8	7.8	0	15
Batch number: 081145705002		number(s		3333125	,533312	27,5333129,5	333131,53331	L33,5333135,	5333137
Lead	UNSPK: -3153 (2)	5333131 : -619 (2)	BKG: 53331 75-125	1	20	271.	268.	1	20
Batch number: 08114SLC026	Sample	number(s):						

*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 2 of 3

Quality Control Summary

Client Name: Chevron Group Number: 1086602

Reported: 05/09/08 at 08:42 AM

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

DUP DUP MS MSD MS/MSD BKG Dup RPD RPD
 &REC
 %REC
 Limits
 RPD
 MAX
 Conc
 Conc
 RPD
 Max

 5333118,5333120,5333122,5333122,5333124,5333126,5333128,5333130,5333132,5333134,5333136
 Analysis Name UNSPK: 5333118

70-130 tetraethyl lead 12 30 102 115

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: Organolead in Soil by GC/MS Batch number: 08114SLC026

	Nitrobenzene-d5	2-Fluorobiphenyl	Terphenyl-d14	
5333118	112	107	129	
5333120	119	108	162*	
5333122	125	130*	153*	
5333124	109	109	160*	
5333126	122	127*	162*	
5333128	125	46*	57	
5333130	68	39*	55	
5333132	54	38*	59	
5333134	52	45*	58	
5333136	93	151*	205*	
Blank	108	101	104	
LCS	110	99	96	
MS	119	102	150*	
MSD	127	140*	144*	
Limits:	47-128	55-123	49-134	

*- Outside of specification

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

CHAIN OF CUSTODY RECORD

temp 6.3-9.7.

ŏ	COMPANY INFORMATION			PROJECT IN	PROJECT INFORMATION			REQUE	REQUESTED ANALYSIS/METHOD	THOD		
LOCATION ENT/	ENTACT HOUSTON		PROJECT	CVX 108	CVX 108 Perth Amboy				<u></u>			
ATTN Mage	Maggie Benningfield			BILLING INF	BILLING INFORMATION							
ADDRESS 699 9	699 S. Friendswood, Suite 100		BILL TO	Direct Bi	Direct Bill Chevron		- V					
Frien	Friendswood, TX 77546		ADDRESS				NEBS					
							IATN					
PHONE 281-99	281-996-9892		PHONE				OO 40					
FAX 281-99	281-996-9888		FAX		PO#		norma un				**************************************	
SAMPLE NO	SAMPLE DESCRIPTION	SAMPLE	SAMPLE	SAMPLE MATRIX	CONTAINER	PRESERV.	MUN	TCLF		8	COMMENTS	
S2197RB2	Soil contaminated with petroleum product	4/14/08		Soil	Glass Jar	eo!	- ×	×		7 %	PO# 0015010693 Release # LAVORERIO	ERIO
S2197RB2-TSP5- 41408	Soil + 5% TSP	4/14/08		Soil	Glass Jar	<u>8</u>	× -	×				
S2197RB2-TSP10- 41408	Soil + 10% TSP	4/14/08		Soil	Glass Jar	<u>8</u>	×	×				
S2197RB2- Enviblend 5-41408	Soil + 5% Enviroblend 80/20	4/14/08		Soil	Glass Jar	lce	×	×				
S2197RB2- Enviblend7.5-41408	S2197RB2- Enviblend7.5-41408 Soil + 7.5% Enviroblend 80/20	4/14/08		Soi	Glass Jar	eo_	× -	×				
							\dashv					
							_					
							_				3	
SAMPLER	M Benningfield		SHIPMENT	FEDEX	×			¥	AIRBILL			
REQUIRED TURNAROUND	☐ SAME DAY	☐ 24 HOURS	JRS 48	HOURS	☐ 72 HOURS	5 □ 5 DAYS		☐ 10 DAYS	N ROUTINE [OTHER:		
1. RELINQUISHED BY	DATE DATE	ш	₹	ISHED BY			DATE	正	3. RELINQUISHED BY	HED BY		DATE
SIGNATURE: M.	16	0/1/20	SIGNATURE						SIGNATURE			
PRINTED NAMESCOMPANY:	Commercial		PRINTED NAME/COMPANY:	MPANY:					PRINTED NAME/COMPANY	M47:		
1. RECEIVED BY	DATE	<u>ال</u> ا	2. RECEIVED BY	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		No. 20 a. No. 40 mag.	A	DATE	3, RECEIVED BY	34		DATE
SIGNATURE			SIGNATURE						- N	tax/11	(max	4-15-08
PRINTED NAME/COMPANY:			PRINTED NAMECOMPANY:	MPANY					SIPA A	P. Moyes	2//12	9460

CHAIN OF CUSTODY RECORD

temp 6.3-9.7° C 2012

0360 タンパク DATE PATE PO# 0015010693 Release # LAVORERIO COMMENTS OTHER 3. RELINQUISHED BY REQUESTED ANALYSIS/METHOD PRINTED NAME/COMPART 3. RECEIVED BY N ROUTINE SIGNATURE AIRBILL ☐ 10 DAYS TCLP Pb × × × × × DATE DATE Total Pb × × × × NUMBER OF CONTAINERS ☐ 5 DAYS CONTAINER | PRESERV. <u>8</u> <u>ප</u> <u>8</u> <u>8</u> <u>8</u> CVX 108 Perth Amboy ☐ 24 HOURS ☐ 48 HOURS ☐ 72 HOURS PROJECT INFORMATION Direct Bill Chevron BILLING INFORMATION **#** Glass Jar Glass Jar Glass Jar Glass Jar Glass Jar FEDEX SAMPLE 2. RELINQUISHED BY 3 PRINTED NAME/COMPANY: 3 Soil Ŝ ŝ 2. RECEIVED BY PRINTED NAME/COMPANT SAMPLE SHIPMENT PROJECT ADDRESS SIGNATURE BILL 70 PHONE Ε¥ SAMPLE DATE 4/14/08 4/14/08 4/14/08 4/14/08 4/14/08 DATE DATE SAME DAY 699 S. Friendswood, Suite 100 Soil + 10% Enviroblend 80/20 Soil + 5% Enviroblend 80/20 SAMPLE DESCRIPTION COMPANY INFORMATION Soil contaminated with Friendswood, TX 77546 M Benningfield ENTACT HOUSTON Maggie Benningfield petroleum product Soil + 10% TSP Soil + 5% TSP REQUIRED TURNAROUND 281-996-9888 281-996-9892 1. RELINQUISHED BY 32387RF4-TSP10-Enviblend10-41408 Enviblend 5-41408 1. RECÉIVED BY PRINTED NAME/COMPANY S2387RF4-TSP5-S2387RF4-Raw SAMPLENO 11408 32387RF4-LOCATION SAMPLER ADDRESS 뭂 ATTN 41408 ξ¥

Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
Cal	(diet) calories	lb.	pound(s)
meq	milliequivalents	kg	kilogram(s)
g	gram(s)	mg	milligram(s)
ug	microgram(s)	I	liter(s)
ml	milliliter(s)	ul	microliter(s)
m3	cubic meter(s)	fib >5 um/ml	fibers greater than 5 microns in length per ml

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

Inorganic Qualifiers

- ppb parts per billion
- **Dry weight**Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

lifier	(uu	9	 u	, ı ç	•

A B C D E	TIC is a possible aldol-condensation product Analyte was also detected in the blank Pesticide result confirmed by GC/MS Compound quatitated on a diluted sample Concentration exceeds the calibration range of the instrument	B E M N S	Value is <crdl, (msa)="" additions="" amount="" but="" calculation<="" control="" due="" duplicate="" estimated="" for="" injection="" interference="" limits="" met="" method="" not="" of="" precision="" spike="" standard="" th="" to="" used="" within="" ≥idl=""></crdl,>
J	Estimated value	U	Compound was not detected
N	Presumptive evidence of a compound (TICs only)	W	Post digestion spike out of control limits
Р	Concentration difference between primary and	*	Duplicate analysis not within control limits
	confirmation columns >25%	+	Correlation coefficient for MSA < 0.995
U	Compound was not detected		
X,Y,Z	Defined in case narrative		

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY – In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

ANALYTICAL RESULTS

Prepared for:

Chevron 1200 State Street Perth Amboy NJ 08861

Prepared by: Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 1088007. Samples arrived at the laboratory on Thursday, Apr 24 2008.

The project for this group is CVX 108 Perth Amboy.

The PO# for this sample group is 0015010693.

The release number for this sample group is LAVORERIO.

Sample No. Coll	ected	Client Description
5341439	4/23/2008	S2387RF4-Redoxite_10 Solid Sample
		SRPID: NJD081982902
		CVX 108 Perth Amboy
5341440	4/23/2008	S2387RF4-Redoxite_10 Solid Sample
		TCLP NVE SRPID: NJD081982902
		CVX 108 Perth Amboy
5341441	4/23/2008	S2197RB2-Redoxite_5 Solid Sample
		SRPID: NJD081982902
		CVX 108 Perth Amboy
5341438	4/23/2008	S2387RF4-Redoxite_5 Solid Sample
		TCLP NVE SRPID: NJD081982902
		CVX 108 Perth Amboy
5341443	4/23/2008	S2197RB2-Redoxite_10 Solid Sample
		SRPID: NJD081982902
	. /00 /000	CVX 108 Perth Amboy
5341444	4/23/2008	S2197RB2-Redoxite_10 Solid Sample
		TCLP NVE SRPID: NJD081982902
5044407	4/00/0000	CVX 108 Perth Amboy
5341437	4/23/2008	S2387RF4-Redoxite_5 Solid Sample
		SRPID: NJD081982902
5341442	4/22/2000	CVX 108 Perth Amboy
5341442	4/23/2008	S2197RB2-Redoxite_5 Solid Sample TCLP NVF SRPID: NJD081982902
		CVX 108 Perth Amboy

METHODOLOGY

ANALYTICAL RESULTS

Prepared for:

Chevron 1200 State Street Perth Amboy NJ 08861

Prepared by: Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

The specified methodologies used in obtaining the enclosed analytical results are indicated on the laboratory chronicle.

ELECTRONIC COPY TO

URS Corporation 1 COPY TO Data Package Group 1 COPY TO

ENTACT HOUSTON

Attn: Jerry Vorbach

Attn: Maggie Benningfield

Questions? Contact your Client Services Representative Wendy A Kozma at (717)656-2300

Respectfully Submitted,

Robert Strocko Jr.

Manager

Chevron Project: CVX 108 Perth Amboy SDG: RFQ97

Report Date: 5/12/2008 16:15 Submit Date: 4/24/2008 9:40

Analysis Name	Units	5341437 S2387RF4	MDL	5341439 S2387RF4	MDL	5341441 S2197RB2	MDL
Analysis Name	Offics	Result	IVIDL	Result	IVIDL	Result	IVIDL
Lead	ug/kg	151,000,000.	126,000.	157,000,000.	122,000.	1,090,000.	2,680.
Moisture	%	22.2	0.50	19.4	0.50	8.7	0.50
tetraethyl lead	ug/kg	2,100.	430.	1,900.	410.	230.	73.
		5341443					
Analysis Name	Units	S2197RB2					
		Result	MDL				
Lead	ug/kg	2,750,000.	2,710.				
Moisture	%	9.6	0.50				
tetraethyl lead	ug/kg	250.	74.				
		5341438		5341440		5341442	
Analysis Name	Units	S2387RF4	MDL	S2387RF4	MDL	S2197RB2	MDL
		Result		Result		Result	
Lead	ug/l	2,730.	6.9	67,200.	69.0	49.5	6.9
		5341444					
Analysis Name	Units	S2197RB2					
		Result	MDL				
Lead	ug/l	257.	6.9				

CAT No.	Analysis Name	Method	Tria ID	I Analysis Date/Time	Analyst	Dilu	tion
5341437	7 S2387RF4-Redoxite_5 Solid Samp	le					
06955	Lead	SW-846 6010B		1 5/7/08 0944	Joanne M Gates		200
00111	Moisture	SM20 2540 G	•	1 4/25/08 1649	Scott W Freisher		1
04221	Organolead in Soil by GC/MS	SW-846 8270C	•	1 5/1/08 1430	Joseph M Gambler		1
00381	BNA Soil Extraction	SW-846 3550B	•	1 4/30/08 2340	Patricia L Foreman		1
05708	SW SW846 ICP Digest	SW-846 3050B	•	1 4/29/08 0835	Marta Rodriguez Rivera	ì	1
5341438	3 S2387RF4-Redoxite_5 Solid Samp	le					
07055	Lead	SW-846 6010B	•	1 5/7/08 0503	Choon Y Tian		1
00947	TCLP Non-volatile Extraction	SW-846 1311	•	1 4/30/08 1220	Jeremy L Weaver	n.a.	
05705	WW/TL SW 846 ICP Digest (tot)	SW-846 3010A	•	1 5/1/08 2010	James L Mertz		1
5341439	S2387RF4-Redoxite_10 Solid Sam	ple					
06955	Lead	SW-846 6010B	•	1 5/7/08 1005	Joanne M Gates		200
00111	Moisture	SM20 2540 G	•	1 4/25/08 1649	Scott W Freisher		1
04221	Organolead in Soil by GC/MS	SW-846 8270C	•	1 5/1/08 1542	Joseph M Gambler		1
00381	BNA Soil Extraction	SW-846 3550B	•	1 4/30/08 2340	Patricia L Foreman		1
05708	SW SW846 ICP Digest	SW-846 3050B	•	1 4/29/08 0835	Marta Rodriguez Rivera	ì	1
5341440	S2387RF4-Redoxite_10 Solid Sam	ple					
07055	Lead	SW-846 6010B		1 5/7/08 0814	Joanne M Gates		10
00947	TCLP Non-volatile Extraction	SW-846 1311	•	1 4/30/08 1220	Jeremy L Weaver	n.a.	
05705	WW/TL SW 846 ICP Digest (tot)	SW-846 3010A	•	1 5/1/08 2010	James L Mertz		1
5341441	S2197RB2-Redoxite_5 Solid Samp	ole					
06955	Lead	SW-846 6010B	•	1 5/7/08 1008	Joanne M Gates		5
00111	Moisture	SM20 2540 G	•	1 4/25/08 1649	Scott W Freisher		1
04221	Organolead in Soil by GC/MS	SW-846 8270C	•	1 5/5/08 2028	Gregory J Drahovsky		1
00381	BNA Soil Extraction	SW-846 3550B		2 5/5/08 1000	Olivia Arosemena		1
05708	SW SW846 ICP Digest	SW-846 3050B	•	1 4/29/08 0835	Marta Rodriguez Rivera	ì	1
	2 S2197RB2-Redoxite_5 Solid Samp	ole					
07055	Lead	SW-846 6010B		1 5/7/08 0533	Choon Y Tian		1
00947	TCLP Non-volatile Extraction	SW-846 1311		1 4/30/08 1220	Jeremy L Weaver	n.a.	
05705	WW/TL SW 846 ICP Digest (tot)	SW-846 3010A	•	1 5/1/08 2010	James L Mertz		1
	S2197RB2-Redoxite_10 Solid Sam	-					
06955	Lead	SW-846 6010B		1 5/7/08 1012	Joanne M Gates		5
00111	Moisture	SM20 2540 G		1 4/25/08 1649	Scott W Freisher		1
04221	Organolead in Soil by GC/MS	SW-846 8270C		1 5/1/08 1631	Joseph M Gambler		1
00381	BNA Soil Extraction	SW-846 3550B		1 4/30/08 2340	Patricia L Foreman		1
05708	SW SW846 ICP Digest	SW-846 3050B	,	1 4/29/08 0835	Marta Rodriguez Rivera	ì	1
	S2197RB2-Redoxite_10 Solid Sam	-					
07055	Lead	SW-846 6010B		1 5/7/08 0546	Choon Y Tian		1
00947	TCLP Non-volatile Extraction	SW-846 1311		1 4/30/08 1220	Jeremy L Weaver	n.a.	
05705	WW/TL SW 846 ICP Digest (tot)	SW-846 3010A	•	1 5/1/08 2010	James L Mertz		1

Client Name: Chevron Group Number: 1088007

Laboratory Compliance Quality Control

Analysis Name	Blank Result	Blank MDL	Report Units	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	Max RPD
Batch number: 08116820004A	S	ample numb	oer(s): 53414	37,5341439	9,5341441	,5341443		
Moisture				100		99-101		
Batch number: 081195708004	S	ample numb	per(s): 53414	37,5341439	9,5341441	,5341443		
Lead	N.D.	490.	ug/kg	100		90-110		
Batch number: 08121SLD026	S	ample numb	per(s): 53414	37,5341439	9,5341443			
tetraethyl lead	N.D.	67.	ug/kg	56*		70-130		
Batch number: 081225705002	S	ample numb	per(s): 53414	38,5341440),5341442	,5341444		
Lead	N.D.	6.9	ug/l	110		90-113		
Batch number: 08123SLE026	S	ample numb	per(s): 53414	41				
tetraethyl lead	N.D.	67.	ug/kg	53*		70-130		
Sample Matrix Quality Control Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate								

Analysis Name	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD MAX	BKG Conc	DUP Conc	DUP RPD	DUP RPD Max
Batch number: 08116820004A		Sample num	nber(s): 53414	37,534143	9,5341441,	5341443 Bh	(G: P34177	8	
Moisture						19.5	21.8	1.	1 15

Batch number: 081195708004

Sample number(s): 5341437,5341439,5341441,5341443 UNSPK: 5341437 BKG: 5341437

^{* -} Outside of specification

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Lead -6328 (2 -6328 (2 75-125 20 8,000,000. 6,000,000. 20 Batch number: 08121SLD026 Sample number(s): 5341437,5341439,5341443 UNSPK: 5341437 27* 32* 30 tetraethyl lead 70-130 7 Batch number: 081225705002 Sample number(s): 5341438,5341440,5341442,5341444 UNSPK: 5341438 BKG: 5341438 Lead 38 (2) 38 (2) 75-125 20 2,730. 2,690. 20 Batch number: 08123SLE026 Sample number(s): 5341441 UNSPK: 5341441 tetraethyl lead 50* 48* 70-130 30

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: Organolead in Soil by GC/MS

Batch number: 08121SLD026

	Nitrobenzene-d5	2-Fluorobiphenyl	Terphenyl-d14	
5341437	120	104	85	
5341439	89	138*	91	
5341443	102	142*	98	
Blank	83	92	84	
LCS	84	88	81	
MS	117	121	86	
MSD	84	145*	97	
Limits:	47-128	55-123	49-134	

Analysis Name: Organolead in Soil by GC/MS

Batch number: 08123SLE026

	Nitrobenzene-d5	2-Fluorobiphenyl	Terphenyl-d14	
5341441	87	109	98	
Blank	98	99	108	

* - Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

LCS	94	100	103	
MS	90	115	103	
MSD	90	106	96	
Limits:	47-128	55-123	49-134	

^{* -} Outside of specification

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

QC Comment

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

5341437 S2387RF4-Redoxite 5 Solid Sample

00111 Moisture

"Moisture" represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported above is on an as-received basis.

04221 Organolead in Soil by GC/MS

The QC limits for tetraethyl lead are advisory only until sufficient data points can be obtained to calculate statistical limits.

Due to sample matrix interferences observed during the extraction, the normal reporting limits were not attained.

State of New Jersey Lab Certification No. PA011
The temperature of the sample(s) upon receipt at the lab was 16.9-17.1C.

5341438 S2387RF4-Redoxite 5 Solid Sample

State of New Jersey Lab Certification No. PA011
The pH of the extraction fluid used for the leachate preparation was 4.93.
The final pH of the leachate was 10.03.
The temperature of the sample(s) upon receipt at the lab was 16.9-17.1C.

see Table 1 in EPA Code of Federal Regulations 40 CFR 261.24.

5341439 S2387RF4-Redoxite 10 Solid Sample

00111 Moisture

"Moisture" represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported above is on an as-received basis.

04221 Organolead in Soil by GC/MS

The QC limits for tetraethyl lead are advisory only until sufficient data points can be obtained to calculate statistical limits.

Due to sample matrix interferences observed during the extraction, the normal reporting limits were not attained.

State of New Jersey Lab Certification No. PA011 The temperature of the sample(s) upon receipt at the lab was 16.9-17.1C.

5341440 S2387RF4-Redoxite 10 Solid Sample

State of New Jersey Lab Certification No. PA011
The pH of the extraction fluid used for the leachate preparation was 4.93.
The final pH of the leachate was 11.35.

The temperature of the sample(s) upon receipt at the lab was 16.9-17.1C.

see Table 1 in EPA Code of Federal Regulations 40 CFR 261.24.

5341441 S2197RB2-Redoxite_5 Solid Sample

00111 Moisture

"Moisture" represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported above is on an as-received basis.

04221 Organolead in Soil by GC/MS

The QC limits for tetraethyl lead are advisory only until sufficient data points can be obtained to calculate statistical limits.

State of New Jersey Lab Certification No. PA011 The temperature of the sample(s) upon receipt at the lab was 16.9-17.1C.

5341442 S2197RB2-Redoxite 5 Solid Sample

State of New Jersey Lab Certification No. PA011
The pH of the extraction fluid used for the leachate preparation was 4.93.
The final pH of the leachate was 7.02.
The temperature of the sample(s) upon receipt at the lab was 16.9-17.1C.

see Table 1 in EPA Code of Federal Regulations 40 CFR 261.24.

5341443 S2197RB2-Redoxite_10 Solid Sample

00111 Moisture

"Moisture" represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported above is on an as-received basis.

04221 Organolead in Soil by GC/MS

The QC limits for tetraethyl lead are advisory only until sufficient data points can be obtained to calculate statistical limits.

State of New Jersey Lab Certification No. PA011 The temperature of the sample(s) upon receipt at the lab was 16.9-17.1C.

5341444 S2197RB2-Redoxite_10 Solid Sample

State of New Jersey Lab Certification No. PA011

The pH of the extraction fluid used for the leachate preparation was 2.86.

The final pH of the leachate was 5.31.

The temperature of the sample(s) upon receipt at the lab was 16.9-17.1C.

see Table 1 in EPA Code of Federal Regulations 40 CFR 261.24.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

Chevron 1200 State Street Perth Amboy NJ 08861

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 1088007. Samples arrived at the laboratory on Thursday, April 24, 2008. The PO# for this group is 0015010693 and the release number is LAVORERIO.

Client Description	<u>Lancaster Labs Number</u>
S2387RF4-Redoxite_5 Solid Sample	5341437
S2387RF4-Redoxite_5 Solid Sample	5341438
S2387RF4-Redoxite_10 Solid Sample	5341439
S2387RF4-Redoxite_10 Solid Sample	5341440
S2197RB2-Redoxite_5 Solid Sample	5341441
S2197RB2-Redoxite_5 Solid Sample	5341442
S2197RB2-Redoxite_10 Solid Sample	5341443
S2197RB2-Redoxite_10 Solid Sample	5341444

METHODOLOGY

The specific methodologies used in obtaining the enclosed analytical results are indicated on the laboratory chronicles.

ELECTRONIC	URS Corporation	Attn: Jerry Vorbach
COPY TO	_	•

1 COPY TO Data Package Group

1 COPY TO ENTACT HOUSTON Attn: Maggie Benningfield

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Wendy A Kozma at (717) 656-2300

Respectfully Submitted,

Robert Strocko Jr.

Manager

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. SW5341437 Group No. 1088007

S2387RF4-Redoxite 5 Solid Sample

SRPID: NJD0819829 $\overline{0}$ 2 CVX 108 Perth Amboy

Collected: 04/23/2008 by MB Account Number: 11071

Submitted: 04/24/2008 09:40 Chevron

874-5 SDG#: RFQ97-01

				Dry		
CAT			Dry	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
06955	Lead	7439-92-1	151,000,000.	126,000.	ug/kg	200
00111	Moisture	n.a.	22.2	0.50	%	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.					
04221	Organolead in Soil by GC/MS					
04223	tetraethyl lead	78-00-2	2,100.	430.	ug/kg	1
	The QC limits for tetraethyl le can be obtained to calculate st		2 2	ficient data poi	nts	

Due to sample matrix interferences observed during the extraction, the normal reporting limits were not attained.

State of New Jersey Lab Certification No. PA011 The temperature of the sample(s) upon receipt at the lab was 16.9-17.1C.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06955	Lead	SW-846 6010B	1	05/07/2008 09:44	Joanne M Gates	200
00111	Moisture	SM20 2540 G	1	04/25/2008 16:49	Scott W Freisher	1
04221	Organolead in Soil by GC/MS	SW-846 8270C	1	05/01/2008 14:30	Joseph M Gambler	1
00381	BNA Soil Extraction	SW-846 3550B	1	04/30/2008 23:40	Patricia L Foreman	1
05708	SW SW846 ICP Digest	SW-846 3050B	1	04/29/2008 08:35	Marta Rodriguez	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. TL5341438 Group No. 1088007

S2387RF4-Redoxite_5 Solid Sample TCLP NVE SRPID: NJD081982902

CVX 108 Perth Amboy

Collected: 04/23/2008 by MB Account Number: 11071

Submitted: 04/24/2008 09:40 Chevron

74-5- SDG#: RFQ97-02

				As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
07055	Lead	7439-92-1	2,730.	6.9	ug/l	1

State of New Jersey Lab Certification No. PA011

The pH of the extraction fluid used for the leachate preparation was 4.93.

The final pH of the leachate was 10.03.

The temperature of the sample(s) upon receipt at the lab was 16.9-17.1C.

If the analysis is for determination of Hazardous Waste Characteristics, see Table 1 in EPA Code of Federal Regulations 40 CFR 261.24.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT			-	Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
07055	Lead	SW-846 6010B	1	05/07/2008 05:03	Choon Y Tian	1
00947	TCLP Non-volatile Extraction	SW-846 1311	1	04/30/2008 12:20	Jeremy L Weaver	n.a.
05705	WW/TL SW 846 ICP Digest (tot)	SW-846 3010A	1	05/01/2008 20:10	James L Mertz	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. SW5341439

Group No. 1088007

S2387RF4-Redoxite_10 Solid Sample

SRPID: NJD0819829 $\overline{0}$ 2 CVX 108 Perth Amboy

Collected: 04/23/2008 by MB Account Number: 11071

Submitted: 04/24/2008 09:40 Chevron

87410 SDG#: RFQ97-03

				Dry		
CAT			Dry	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
06955	Lead	7439-92-1	157,000,000.	122,000.	ug/kg	200
00111	Moisture	n.a.	19.4	0.50	%	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.					
04221	Organolead in Soil by GC/MS					
04223	tetraethyl lead	78-00-2	1,900.	410.	ug/kg	1
	The QC limits for tetraethyl lecan be obtained to calculate st	-	. 2	icient data point	S	

Due to sample matrix interferences observed during the extraction, the normal reporting limits were not attained.

State of New Jersey Lab Certification No. PA011 The temperature of the sample(s) upon receipt at the lab was 16.9-17.1C.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT			1	Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06955	Lead	SW-846 6010B	1	05/07/2008 10:05	Joanne M Gates	200
00111	Moisture	SM20 2540 G	1	04/25/2008 16:49	Scott W Freisher	1
04221	Organolead in Soil by GC/MS	SW-846 8270C	1	05/01/2008 15:42	Joseph M Gambler	1
00381	BNA Soil Extraction	SW-846 3550B	1	04/30/2008 23:40	Patricia L Foreman	1
05708	SW SW846 ICP Digest	SW-846 3050B	1	04/29/2008 08:35	Marta Rodriguez Rivera	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. TL5341440

Group No. 1088007

S2387RF4-Redoxite_10 Solid Sample TCLP NVE SRPID: NJD081982902

CVX 108 Perth Amboy

Collected: 04/23/2008 by MB Account Number: 11071

Submitted: 04/24/2008 09:40 Chevron

74-10 SDG#: RFQ97-04

As Received As Received Method Dilution Detection Analysis Name CAS Number Result Units Factor No. Limit 07055 Lead 7439-92-1 67,200. 69.0 ug/l

State of New Jersey Lab Certification No. PA011

The pH of the extraction fluid used for the leachate preparation was 4.93.

The final pH of the leachate was 11.35.

The temperature of the sample(s) upon receipt at the lab was 16.9-17.1C.

If the analysis is for determination of Hazardous Waste Characteristics, see Table 1 in EPA Code of Federal Regulations 40 CFR 261.24.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT			-	Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
07055	Lead	SW-846 6010B	1	05/07/2008 08:14	Joanne M Gates	10
00947	TCLP Non-volatile Extraction	SW-846 1311	1	04/30/2008 12:20	Jeremy L Weaver	n.a.
05705	WW/TL SW 846 ICP Digest (tot)	SW-846 3010A	1	05/01/2008 20:10	James L Mertz	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. SW5341441 Group No. 1088007

S2197RB2-Redoxite 5 Solid Sample

SRPID: NJD0819829 $\overline{0}$ 2 CVX 108 Perth Amboy

Collected: 04/23/2008 by MB Account Number: 11071

Submitted: 04/24/2008 09:40 Chevron

Reported: 05/12/2008 at 16:15 1200 State Street
Discard: 07/12/2008 Perth Amboy NJ 08861

972-5 SDG#: RFQ97-05

				Dry		
CAT			Dry	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
06955	Lead	7439-92-1	1,090,000.	2,680.	ug/kg	5
00111	Moisture	n.a.	8.7	0.50	%	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.					
04221	Organolead in Soil by GC/MS					
04223	tetraethyl lead	78-00-2	230.	73.	ug/kg	1
	The QC limits for tetraethyl lecan be obtained to calculate st	1	1	icient data point	S	

State of New Jersey Lab Certification No. PA011 The temperature of the sample(s) upon receipt at the lab was 16.9-17.1C.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06955	Lead	SW-846 6010B	1	05/07/2008 10:08	Joanne M Gates	5
00111	Moisture	SM20 2540 G	1	04/25/2008 16:49	Scott W Freisher	1
04221	Organolead in Soil by GC/MS	SW-846 8270C	1	05/05/2008 20:28	Gregory J Drahovsky	1
00381	BNA Soil Extraction	SW-846 3550B	2	05/05/2008 10:00	Olivia Arosemena	1
05708	SW SW846 ICP Digest	SW-846 3050B	1	04/29/2008 08:35	Marta Rodriguez Rivera	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. TL5341442 Group No. 1088007

S2197RB2-Redoxite_5 Solid Sample TCLP NVE SRPID: NJD081982902

CVX 108 Perth Amboy

Collected: 04/23/2008 by MB Account Number: 11071

Submitted: 04/24/2008 09:40 Chevron

72-5- SDG#: RFQ97-06

				As Received					
CAT		As Received Method Dilut							
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor			
07055	Lead	7439-92-1	49.5	6.9	ug/l	1			

State of New Jersey Lab Certification No. PA011

The pH of the extraction fluid used for the leachate preparation was 4.93.

The final pH of the leachate was 7.02.

The temperature of the sample(s) upon receipt at the lab was 16.9-17.1C.

If the analysis is for determination of Hazardous Waste Characteristics, see Table 1 in EPA Code of Federal Regulations 40 CFR 261.24.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT			-		Dilution	
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
07055	Lead	SW-846 6010B	1	05/07/2008 05:33	Choon Y Tian	1
00947	TCLP Non-volatile Extraction	SW-846 1311	1	04/30/2008 12:20	Jeremy L Weaver	n.a.
05705	WW/TL SW 846 ICP Digest (tot)	SW-846 3010A	1	05/01/2008 20:10	James L Mertz	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. SW5341443

Group No. 1088007

S2197RB2-Redoxite 10 Solid Sample

SRPID: NJD0819829 $\overline{0}$ 2 CVX 108 Perth Amboy

Collected: 04/23/2008 by MB Account Number: 11071

Submitted: 04/24/2008 09:40 Chevron

97210 SDG#: RFQ97-07

				Dry		
CAT			Dry	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
06955	Lead	7439-92-1	2,750,000.	2,710.	ug/kg	5
00111	Moisture	n.a.	9.6	0.50	%	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.					
04221	Organolead in Soil by GC/MS					
04223	tetraethyl lead	78-00-2	250.	74.	ug/kg	1
	The QC limits for tetraethyl le can be obtained to calculate st		1 1	ficient data poi	nts	

State of New Jersey Lab Certification No. PA011 The temperature of the sample(s) upon receipt at the lab was 16.9-17.1C.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT					Dilution	
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06955	Lead	SW-846 6010B	1	05/07/2008 10:12	Joanne M Gates	5
00111	Moisture	SM20 2540 G	1	04/25/2008 16:49	Scott W Freisher	1
04221	Organolead in Soil by GC/MS	SW-846 8270C	1	05/01/2008 16:31	Joseph M Gambler	1
00381	BNA Soil Extraction	SW-846 3550B	1	04/30/2008 23:40	Patricia L Foreman	1
05708	SW SW846 ICP Digest	SW-846 3050B	1	04/29/2008 08:35	Marta Rodriguez Rivera	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. TL5341444

Group No. 1088007

S2197RB2-Redoxite_10 Solid Sample TCLP NVE SRPID: NJD081982902

CVX 108 Perth Amboy

Collected: 04/23/2008 by MB Account Number: 11071

Submitted: 04/24/2008 09:40 Chevron

97-10 SDG#: RFQ97-08*

				As Received					
CAT			As Received	Method		Dilution			
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor			
07055	Lead	7439-92-1	257.	6.9	ug/l	1			

State of New Jersey Lab Certification No. PA011

The pH of the extraction fluid used for the leachate preparation was 2.86.

The final pH of the leachate was 5.31.

The temperature of the sample(s) upon receipt at the lab was 16.9-17.1C.

If the analysis is for determination of Hazardous Waste Characteristics, see Table 1 in EPA Code of Federal Regulations 40 CFR 261.24.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT			-		Dilution	
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
07055	Lead	SW-846 6010B	1	05/07/2008 05:46	Choon Y Tian	1
00947	TCLP Non-volatile Extraction	SW-846 1311	1	04/30/2008 12:20	Jeremy L Weaver	n.a.
05705	WW/TL SW 846 ICP Digest (tot)	SW-846 3010A	1	05/01/2008 20:10	James L Mertz	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Quality Control Summary

Client Name: Chevron Group Number: 1088007

Reported: 05/12/08 at 04:15 PM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank <u>MDL</u>	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max	
Batch number: 08116820004A Moisture	Sample num	ber(s):	5341437,534	1439,53414 100	141,534144	3 99-101			
Batch number: 081195708004 Lead	Sample num N.D.	ber(s):	5341437,534 ug/kg	1439,53414 100	141,534144	3 90-110			
Batch number: 08121SLD026 tetraethyl lead	Sample num N.D.	ber(s):	5341437,534 ug/kg	1439,53414 56*	143	70-130			
Batch number: 081225705002 Lead	Sample num N.D.	ber(s): 6.9	5341438,534 ug/l	1440,53414 110	142,534144	4 90-113			
Batch number: 08123SLE026 tetraethyl lead	Sample num	ber(s):	5341441 ug/kg	53*		70-130			

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS %REC	MSD %REC	MS/MSD <u>Limits</u>	RPD	RPD <u>MAX</u>	BKG Conc	DUP Conc	DUP RPD	Dup RPD <u>Max</u>
Batch number: 08116820004A Moisture	Sample	number(s)	: 5341437	,534143	9,5341	441,5341443 19.5	BKG: P3417 21.8	78 11	15
Batch number: 081195708004 Lead	Sample -6328 (2)		: 5341437 75-125			441,5341443 118,000,00 0.	UNSPK: 5341 116,000,00 0.		5341437 20
Batch number: 08121SLD026 tetraethyl lead	Sample 27*	number(s) 32*		,534143 7	9,5341 30	443 UNSPK: 5	5341437		
Batch number: 081225705002 Lead	Sample 38 (2)		: 5341438 75-125	•	0,5341 20	442,5341444 2,730.		438 BKG: 1	5341438 20
Batch number: 08123SLE026 tetraethyl lead	Sample 50*	number(s) 48*	: 5341441 70-130	UNSPK:	53414 30	41			

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Quality Control Summary

Group Number: 1088007 Client Name: Chevron

Reported: 05/12/08 at 04:15 PM

Surrogate Quality Control

Analysis Name: Organolead in Soil by GC/MS Batch number: 08121SLD026 Nitrobenzene-d5 2-Flu

Dacen nam	ber: 08121SLD026 Nitrobenzene-d5	2-Fluorobiphenyl	Terphenyl-d14	
5341437	120	104	85	
5341439	89	138*	91	
5341443	102	142*	98	
Blank	83	92	84	
LCS	84	88	81	
MS	117	121	86	
MSD	84	145*	97	
Limits:	47-128	55-123	49-134	

Analysis Name: Organolead in Soil by GC/MS Batch number: 08123SLE026

	Nitrobenzene-d5	2-Fluorobiphenyl	Terphenyl-d14	
5341441	87	109	98	
Blank	98	99	108	
LCS	94	100	103	
MS	90	115	103	
MSD	90	106	96	
Limits:	47-128	55-123	49-134	

*- Outside of specification

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

PRINTED NAME/COMPANY:

ENTACT ant 11071 ghp 1088007 # 5341437-44

PRINTED NAME/COMPANY:

CHAIN OF CUSTODY RECORD NO. ___ 1 of 1 COMPANY INFORMATION REQUESTED ANALYSIS/METHOD PROJECT INFORMATION LOCATION PROJECT **ENTACT HOUSTON** CVX 108 Perth Andboy ATTN Maggie Benningfield BILLING INFORMATION ADDRESS BILL TO 699 S. Friendswood, Suite 100 Direct Bill Chevron **ADDRESS** Friendswood, TX 77546 PHONE PHONE 281-996-9892 FAX PO# FAX 281-996-9888 TOLP Pb Total Pb SAMPLE SAMPLE SAMPLE CONTAINER PRESERV. COMMENTS SAMPLE NO SAMPLE DESCRIPTION DATE TIME MATRIX PO# 0015010693 S2387RF4-Χ Х Х Soil + 5% Redoxite 4/23/08 Soil Glass Jar Ice Release # LAVORERIO Redoxite 5 S2387RF4-Χ Х χ Soil + 10% Redoxite 4/23/08 Soil Glass Jar Ice Redoxite 10 S2197RB2-Х Χ Χ temp 16.9-17.10C Soil + 5% Redoxite 4/23/08 Soil Glass Jar ice Redoxite 5 S2197RB2-Х Х Χ Soil Soil + 10% Redoxite 4/23/08 Glass Jar Redoxite 10 **FEDEX** M Benningfield AIRBILL SHIPMENT SAMPLER. ☐ SAME DAY ☐ 24 HOURS ☐ 48 HOURS ☐ 72 HOURS ☐ 5 DAYS ☑ 10 DAYS ☐ ROUTINE ☐ OTHER: REQUIRED TURNAROUND DATE 2. RECINQUISHED BY DATE 3. RELINQUISHED BY DATE 1. RELINQUISHED BY SIGNATURE: SIGNATURE: PRINTED NAMECOMPANY/ Mogg; e Denningtich PRINTED NAME/COMPANY: PRINTED NAME/COMPANY: 2. RECEIVED BY 3. RECEIVED BY 1. RECEIVED BY DATE DATE DATE SIGNATURE: ALLOVANA Weslund PRINTED NAME/COMPANY: Deboyan A Neslund LII SIGNATURE: 4/24/08

Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
Cal	(diet) calories	lb.	pound(s)
meq	milliequivalents	kg	kilogram(s)
g	gram(s)	mg	milligram(s)
ug	microgram(s)	I	liter(s)
ml	milliliter(s)	ul	microliter(s)
m3	cubic meter(s)	fib >5 um/ml	fibers greater than 5 microns in length per ml

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

Inorganic Qualifiers

- ppb parts per billion
- **Dry weight**Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

9	lifier	(uu	9	 u	" 9	•

A B C D E	TIC is a possible aldol-condensation product Analyte was also detected in the blank Pesticide result confirmed by GC/MS Compound quatitated on a diluted sample Concentration exceeds the calibration range of the instrument	B E M N S	Value is <crdl, (msa)="" additions="" amount="" but="" calculation<="" control="" due="" duplicate="" estimated="" for="" injection="" interference="" limits="" met="" method="" not="" of="" precision="" spike="" standard="" th="" to="" used="" within="" ≥idl=""></crdl,>
J	Estimated value	U	Compound was not detected
N	Presumptive evidence of a compound (TICs only)	W	Post digestion spike out of control limits
Р	Concentration difference between primary and	*	Duplicate analysis not within control limits
	confirmation columns >25%	+	Correlation coefficient for MSA < 0.995
U	Compound was not detected		
X,Y,Z	Defined in case narrative		

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY – In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.